Molecular Qubit Database

Search the table below for various molecular qubits described in Mullin et al. Systems-Chart Approach to the Design of Spin Relaxation Times in Molecular Qubits (2024)

Molecular qubit relaxation time data set contain the names, composition, and experimental relaxation times from the literature.

  • Additional information about the geometry of the molecules, computed from experimental structures files, is also included.
  • Structure files are available on GitHub.

If your molecular qubit color center is missing, please contact James Rondinelli to have your entry added. We understand that new molecules and materials are discovered every year.

molecule_namemolecule_abbreviationspinqubit_concentrationmetalligandcounterIonchemFormchemFormWCounterIonSolventtypeT1_10T1_80T2_10T2_80n_neighborsangles_meanangles_minangles_maxtau_4_primetau_4tau_5solvent_numPaper_URLName_of_Paper
(Et3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(Et3NH)2C18H12O6VC30H50N2O6Vo-terphenyltable84001.462.250.77695.1494492525.47835505163.98624160001https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstractCounterion influence on dynamic spin properties in a V(IV) complex
(n-Hex3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(n-Hex3NH)2C18H12O6VC54H92N2O6Vo-terphenyltable121001.794.8021.13695.2085426425.49482922166.59032270001https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstractCounterion influence on dynamic spin properties in a V(IV) complex
(n-Oct3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(n-Oct3NH)2C18H12O6VC66H120N2O6Vo-terphenyltable86001.964.761.151https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstractCounterion influence on dynamic spin properties in a V(IV) complex
(n-Bu3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(n-Bu3NH)2C18H12O6VC50H84N2O8Vo-terphenyltable108002.134.671.14695.3392332625.64148807166.81561660001https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstractCounterion influence on dynamic spin properties in a V(IV) complex
vanadyl 5-(4-carboxyphenyl)-10,15,20-tritolylporphyrinVOTTP-COOH0.50.388888889VC49O2H39N4VC49O2H39N4VC49O2H39N4ZnTTPWPD6.2808340733.8332611298102.751715727.85242182179.7833670001https://link.springer.com/article/10.1007/BF03162630Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids
Cu(II) tetratolylporphyrinCuTTP0.50.388888889CuC48H38N4CuC48H38N4CuC48H38N4ZnTTPWPD3.2862116991.9851085316100.224834130.09852241177.55445820001https://link.springer.com/article/10.1007/BF03162630Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids
Ag(II) tetratolylporphyrinAgTTP0.50.388888889AgC48H38N4AgC48H38N4AgC48H38N4H2TTPWPD3.2862116990.829000078102.751715727.85242182179.7833670001https://link.springer.com/article/10.1007/BF03162630Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids
Cu(II) bis(diethyldithiocarbamate)Cu(dtc)20.50.388888889CuC5H10NS2C10H20CuN2S4C10H20CuN2S4Ni(dtc)2, solidWPD0.8001740861.064212046610830.000727781800001https://link.springer.com/article/10.1007/BF03162630Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids
Cu(II) bis(diethyldithiophosphate)Cu(Et2dtp)20.50.388888889CuC4H11O2PS2CuC8H22O4P2S2CuC8H22O4P2S2Ni(Et2dtp)2WPD3.2862116991.736032766689.444413818.7948316351800001https://link.springer.com/article/10.1007/BF03162630Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids
Cu(II) bis(diphenyldithiophosphate)Cu(Ph2dtp)20.50.388888889CuC12H10PS2CuC24H20P2S2CuC24H20P2S2Ni(Ph2dtp)2WPD1.7509770943.2289480891https://link.springer.com/article/10.1007/BF03162630Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids
bis(acetylacetonate)oxovanadium(IV)(VO-(acac)2)0.55mMVC5H8O2C10H16O5VC10H16O5V1:1 water :glycerolWPD8129.81208411.515561416100.603256925.94139821149.80764020001https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K
bis(maltolato)oxovanadium(IV)(VO(maltol)2)0.52.5 mMVC6H5O3C12H10O7VC12H10O7V1:1 water :glycerolWPD56436.5157615.51867754594.6092342725.00972692146.85588280001https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K
Cesium N,N'-ethylenebis(salicylideneiminato-5'-sulfonato)-oxovanadium(IV)Cs2[VO(salen-SO3)(H2O)]0.512.5 mMVO4C7SNHCsO10C14S2N2H4VCsO10C14S2N2H4VCs1:1 water :glycerolWPD8569.77173337.47873691https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K
bis(N—hydroxyiminodiacetato)oxovanadium(IV)(Ca[V(hida)2])0.512.5 mMVO5H4C4NCaO10H8C8N2CaVO10H8C8N2CaV1:1 water :glycerolWPD101103.797226.26342358896.5365884722.91190136157.32417460001https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K
Cr(NO)(CN)53-0.50.9 mMCrCNCrNOC5N5CrNOC5N51:1 water/glycerolWPD524159.953117.355972116106.818019484.21389247178.02196740001https://pubs.acs.org/doi/full/10.1021/ic981063+Electron Spin Relaxation in Chromium−Nitrosyl Complexes
Cr(NO)(EHBA)+0.50.26 mMCrC6H10O3C12H26O8CrNC12H26O8CrN1:1 water/glycerolWPD38528.0283611.802457553.3054342891https://pubs.acs.org/doi/full/10.1021/ic981063+Electron Spin Relaxation in Chromium−Nitrosyl Complexes
Cr(NO)(EHBA)20.50.47 mMCrC6H10O3C6O7H18CrNC6O7H18CrN1:1 water/glycerolWPD26993.3983113.291626961https://pubs.acs.org/doi/full/10.1021/ic981063+Electron Spin Relaxation in Chromium−Nitrosyl Complexes
Cr(NO)(H2O)52+0.50.39 mMCrH2OH10O6NCrH10O6NCr1:1 water/glycerolWPD53576.829335.333732664.5576246963.7301185776106.25727682.06569269177.07012490001https://pubs.acs.org/doi/full/10.1021/ic981063+Electron Spin Relaxation in Chromium−Nitrosyl Complexes
oxo−chromium(V) bis(2-ethyl-2-hydroxybutyrate)CrO(EHBA)2-0.51 mMCrC6H10O3C12H20O7CrC12H20O7Cr1:1 water/glycerolWPD40847.9310422.667008643.4695180061.507624715106.242073283.30661037158.6528034000.0763613651https://pubs.acs.org/doi/full/10.1021/ic981063+Electron Spin Relaxation in Chromium−Nitrosyl Complexes
Vanadium(II) oxide (VO2+ but disolved in water)VO(D2O)50.51.2 mMVD2OVO6H10VO6H101:1 D20:glycerol-ds,WPD6.71556328475.02310043.8738564716105.246476879.97404439175.15223880003https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3DihubSolvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution
Vanadium(II) oxide (VO2+ but disolved in water)VO(H2O)50.5.3 mMVH2OVO6H10VO6H101:1 H20:glycerolWPD101446.41177.6334313695.31E+003.6270690716105.246476879.97404439175.15223880001https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3DihubSolvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution
Cu(aq)2+,0.51-5 mMCuCuCu1:1 H2O/glycerolWPD38020.263.160.231https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Copper 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxylatomethyl)amino]acetateCuEDTA0.51-5 mMCuC10H14N2O8C10Cu1H12N2O8C10Cu1H12N2O81:1 H2O/glycerolWPD2704.2686290.383.090.356104.764217173.62034208176.17976560001https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Bis(2-N-1-adamantyl-pyrrolylcarbaldimine)copper(II)CuN4 complexes (R = 1-adamantyl)0.51-5 mMCuC15N2H16C30H38N4CuC30H38N4CuToluene/CHCl3WPD17380.493.630.251https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
copper(II) tetraimidazoleCuIM40.51-5 mMCuC12H16Cl2CuN6O8C12H16Cl2CuN6O81:1 H2O/ethylene glycolWPD24550.52585.8522811433.6995331178.6602224000.0888414261https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Cu-S100A120.51-5 mMCuC24H22N4CuC24H22N4CuBuffer/glycerolWPD11750.651https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
CuN4 complexes, (R =tert-butyl) 0.51-5 mMCutert-butylC5N2C18H18N4CuC18H18N4CuToluene/CHCl3WPD7240.793.090.314111.219807484.56624064142.15046970.583176710.56909259501https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Cu-S100B0.51-5 mMCuBuffer/glycerolWPD0.851https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
copper(II) hydroxideCu(OH)42-0.51-5 mMCuCuH8O4CuH8O43 M NaOH(aq)WPD29510.912.40.394100.0025824.81799974175.23873750001https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Cu/Ca-S100B0.51-5 mMCuBuffer/glycerolWPD48981.151https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
copper(II) tetra-2-methylimidazoleCuMeIM40.51-5 mMCuC13H19N2CuC13H19N2Cu1:1 H2O/ethylene glycolWPD33881.351https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
PrP(23–28, 57–91)0.51-5 mMCuBuffer/glycerolWPD1.621https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Bis(2-N-methylpyrrolylcarbaldimine)copper(II)CuN4 complexes, (R = methyl) 0.51-5 mMCuC6N2H3C12H6N4CuC12H6N4CuToluene/CHCl3WPD36312.293.890.631https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
bis-(H-pyrrolylcarbaldimine)copper(II)CuN4 complexes, (R = H)0.51-5 mMCuC5N2HC10H2N4CuC10H2N4CuToluene/CHCl3WPD35483.023.470.784119.999999982.441232011808.70E-096.06E-0901https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Bis(n-butylpyrrolylcarbaldimine)copper(II)CuN4 complexes, (R =n-butyl) 0.51-5 mMCuC9N2H9C18H18N4CuC18H18N4CuToluene/CHCl3WPD21883.552.690.894111.218268784.59489917142.12119550.5832935730.56930021301https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Bis(2-N-diphenylmethylpyrrolylcarbaldimine)copper(II)CuN4 complexes, (R = diphenylmethyl) or0.51-5 mMCuC22N3H19C36H30CuN4C36H30CuN4Toluene/CHCl3WPD29514.684.070.954114.647781182.52612896161.97641820.2808807520.27320750601https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Bis(2-N-2-adamantyl-pyrrolylcarbaldimine)copper(II)CuN4 complexes, (R = 2-adamantyl) or0.51-5 mMCuC15N2H16C30H38N4CuC30H38N4CuToluene/CHCl3WPD25125.251https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
bis(diethyldithiocarbamato)copper(II)Cu(dtc)20.51-5 mMCuC5H10NS2C10H20CuN2S4C10H20CuN2S4Toluene/CHCl3WPD169.73287.082.1387309211.160657197610830.000727781800001https://www.sciencedirect.com/science/article/pii/S1064185885799718Temperature and Orientation Dependence of Electron-Spin RelaxationRates for Bis ( diethyldithiocarbamato ) copper ( II )
bis(diethyldithiocarbamato)copper(II)Cu(dtc)20.51-5 mMCuC5H10NS2C10H20CuN2S4C10H20CuN2S4Ni(dtc)2, solidWPD174.3896.169830.844060.86724610830.000727781800001https://www.sciencedirect.com/science/article/pii/S1064185885799718Temperature and Orientation Dependence of Electron-Spin RelaxationRates for Bis ( diethyldithiocarbamato ) copper ( II )
Cu(hfac)2-(Me2-bipy)0.51-5 mMCuToluene/CHCl3WPD178610830.000727781800001https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
Bis(2-N-benzyl-pyrrolylcarbaldimine)copper(II)CuN4 complexes, (R = benzyl) or 0.51-5 mMCuC24H14N4CuC24H14N4CuToluene/CHCl3WPD12024114.265984282.47608036172.52319290.3453699020.27257798201https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
(tetraphenylporphyrinato)Cu(II)CuTTP0.51-5 mMCuC44H28CuN4C44H28CuN4Toluene/CHCl3WPD1007.6916994114.5158984.53468813168.76485530.2327222360.21040903101https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
HGGGW0.51-5 mMCuBuffer/glycerolWPD14131https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
bis(hexafluoroacetylacetonato)Cu(II)ZnTTPbipy-Cu(hfac)2f0.51-5 mMCuToluene/CHCl3WPD529.69770761https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3DihubElectron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K
(Nitrido Cr(V)tetratolylporphyrin)CrNTTP0.51 mMCrC12H9NC48 H36 Cr N5C48 H36 Cr N59:1 toluene:THFWPD7694.03607247.372499514.185906743.3362668115107.039067687.07956663158.94115510001https://link.springer.com/article/10.1007/BF03162611Electron spin relaxation rates for nitridochromium(V) tetratolylporphyrin and nitridochromium(V) octaethylporphyrin in Frozen solution
(Nitrido Cr(V)tetratolylporphyrin)CrNTTP0.51 mMCrC12H9NC48 H36 Cr N5C48 H36 Cr N5tolueneWPD8345.35570837.056161275107.039067687.07956663158.9411551000.0151713461https://link.springer.com/article/10.1007/BF03162611Electron spin relaxation rates for nitridochromium(V) tetratolylporphyrin and nitridochromium(V) octaethylporphyrin in Frozen solution
(nitrido Cr(V)octaethylporphyrin)CrNOEP0.51 mMCrC36H44N4C36H44N5CrC36H44N5Cr9:1 toluene:THFWPD2.2103361572.3369046941https://link.springer.com/article/10.1007/BF03162611Electron spin relaxation rates for nitridochromium(V) tetratolylporphyrin and nitridochromium(V) octaethylporphyrin in Frozen solution
potassium bis(2-hydroxy-2-methylbutyrato)oxochromate(V)K[ CrO( HMBA)2]0.51 mMCrC5H10O3KC10H16CrO7C10 H16 Cr O7 K1: 1 water glycerolWPD47437.497543.7759441590.1995051871https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3DihubElectron-spin relaxation times of chromium(V)
Sodium bis(l-hydroxycyclohexanecarboxylato)oxochromate(V)Na [ CrO( HCA)2]0.51 mMCrC7H12O2NaC14H20CrO7C14H20CrNa071: 1 water glycerolWPD105507.49121.02690351https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3DihubElectron-spin relaxation times of chromium(V)
Sodium bis[2-ethyl-2-hydroxybutanoato(2-))oxochromate(V)Na[CrO(HEBA)2]0.50.5 mMCrC6H12O3NaC12H20CrO7C12 H20 Cr O7 Na1: 1 water glycerolWPD43326.857990.1146311465106.242073283.30661037158.6528034000.0763613651https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3DihubElectron-spin relaxation times of chromium(V)
Sodium bis[(2-hydroxyisobutyric )oxochromate(V)]Na[CrO(HIBA)2]0.50.5 mMCrC4H8O3NaCrO7H16C8CrO7H16C8Na1: 1 water glycerolWPD70077.084790.4551954320.2132076151https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3DihubElectron-spin relaxation times of chromium(V)
(Ph4P)2[VO(C3S4O)2](4)0.50.5 mMVC3S4O(Ph4P)2C6S8O3VC54H40O3P2S8V1:1 DMF:TolWPD2065451.052.60.685106.332711783.18663645148.8891068000.0008715451https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[VO(C3S4O)2](4)0.50.5 mMVC3S4O(Ph4P)2C6S8O3VC54H40O3P2S8V1:1 DMF-d7:Tol-d8WPD1625952.484.872.35106.332711783.18663645148.8891068000.0008715452https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[VO(C3S5)2](3)0.50.5 mMVα-C3S5(Ph4P)2C6S10OVC54H40OP2S10V1:1 DMF:TolWPD1633155.852.950.695106.131026483.59695939150.7281339000.023124961https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[VO(C3S5)2](3)0.50.5 mMVα-C3S5(Ph4P)2C6S10OVC54H40OP2S10V1:1 DMF-d7:Tol-d8WPD1811361.094.762.455106.131026483.59695939150.7281339000.023124962https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[VO(C3S5)2](2)0.50.5 mMVβ-C3S5(Ph4P)2C6S10OVC54H40OP2S10V1:1 DMF:TolWPD1819776.382.30.6825106.30002184.07978902148.606734000.0010129051https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[VO(C3S5)2](2)0.50.5 mMVβ-C3S5(Ph4P)2C6S10OVC54H40OP2S10V1:1 DMF-d7:Tol-d8WPD1972476.744.572.595106.30002184.07978902148.606734000.0010129052https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[VO(C8S8)2](1)0.50.5 mMVC8S8(Ph4P)3C16S16OVC65H43O2P2S16V1:1 DMF:TolWPD2376883.373.20.7765105.329465480.69113622141.2017497000.0018162751https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[VO(C8S8)2](1)0.50.5 mMVC8S8(Ph4P)2C16S16OVC65H43O2P2S16V1:1 DMF-d7:Tol-d8WPD2128188.513.52.715105.329465480.69113622141.2017497000.0018162752https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
(Ph4P)2[V(C3S5)3](2)0.50.5 mMVβ-C3S5(Ph4P)2C9S15VC57H40P2S15V1:1 DMF/TolWPD7112.1351376.3533093192.870.7826105.36593483.72486257166.3048180001https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(Ph4P)2[V(C8S8)3](1)0.50.5 mMVC8S8(Ph4P)2C24S24VC81H51Cl2P2S24V1:1 DMF/Toltable6606.934488.5113803823.251.0066105.064849580.54014174166.03642290001https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(Ph4P)2[V(C3S4O)3](4)0.50.5 mMVC3S4O(Ph4P)2C9S12O3VC58H44O4P2S12V1:1 DMF/Toltable10495.424298.810492.790.7816105.076188479.74399129164.47455810001https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(Ph4P)2[V(C3S5)3](3)0.50.5 mMVα-C3S5(Ph4P)2C9S15VC60H46OP2S15V1:1 DMF/Toltable5727.960319.840112.590.7966105.228093578.93879817166.99841230001https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(d20-PPh4)[Cu(mnt)2]0.51 mMCuS2C4N2d20-PPh4S4C8N4CuC56D40NiN4P2S41 : 1 d2-DCM/CS2table39855.520.33.54119.997432987.63208039179.99999910.0001569840.00010923802https://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP08161D#!divAbstractMolecular qubits based on potentially nuclear-spin-free nickel ions
K2[V(C9H6S8)3](3)0.50.32 mMVC9H6S8K2C27H27N3S18VC27H27K2N3S18V45 vol % dimethylformamide-d7/toluene-d8table53007.576.892.4096104.899894279.64373861163.56349640002https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b00794Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes
K2[V(C7H6S6)3](2)0.50.32 mMVC7H6S7K2C27H27N3S18VC27H27K2N3S18V45 vol % dimethylformamide-d7/toluene-d8table590010.617.482.8096104.871829979.80667066162.75521590002https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b00794Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes
K2[V(C5H6S4)3](1)0.50.32 mMVC5H6S4K2C27H30S12VC27H30K2S12V45 vol % dimethylformamide-d7/toluene-d8table800013.47.212.7076104.760371680.20536622163.02142370002https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b00794Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes
Copper;(Z)-3-oxo-1,3-diphenylprop-1-en-1-olate[Cu(dbm)2]0.51 mMCuC15H11O2C30H22O4CuC30H22CuO4[Pd(dbm)2]table82002.36.811.26100.160996422.0768824177.9585940001https://pubs.rsc.org/en/content/articlelanding/2017/CC/C6CC07813C#!divAbstractQuantitative prediction of nuclear-spin-diffusion-limited coherence times of molecular quantum bits based on copper(II)
[(Ph)4P]2[VO(cat)2]0.51 mMVC6H4O2((Ph)4P)2C12H8O5VC60 H48 O5 P2 VCH2Cl2:C6H6 3:1table6355.98084323.770969854.3392579963.066632285594.6361011326.11340832146.43364610001https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b02616Structural Effects on the Spin Dynamics of Potential Molecular Qubits
[(Ph)4P]2[VO(naph-cat)2]0.51 mMVC16H12O2((Ph)4P)3C32H24O4C68H52O5P2VCH2Cl2:C6H6 3:1WPD5531.98599645.970482495.9279939074.8155023941https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b02616Structural Effects on the Spin Dynamics of Potential Molecular Qubits
VO(dpm)20.51:10 mass ratioVdpmC22H38O5VC22H38O5Vpolystyrene with mass ratio 1 : 10WPD2545.90.320.175106.039376883.59852885146.3627268000.0019332321https://pubs.rsc.org/en/Content/ArticleLanding/2016/SC/C5SC04295J#!divAbstractQuantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits
VO(dpm)20.51 mMVdpmC22H38O5VC22H38O5V2:3 toluene:CH2Cl2 mixture (1sol200 mM) deuteratedWPD2.811.895106.039376883.59852885146.3627268000.0019332322https://pubs.rsc.org/en/Content/ArticleLanding/2016/SC/C5SC04295J#!divAbstractQuantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits
VO(dpm)20.51 mMVdpmC22H38O5VC22H38O5V2:3 toluene:CH2Cl2 mixture mixture (1sol200 mM) proticWPD2.82.125106.039376883.59852885146.3627268000.0019332321https://pubs.rsc.org/en/Content/ArticleLanding/2016/SC/C5SC04295J#!divAbstractQuantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits
[(Ph)4P]2[VO(dmit)2] (1)0.51:20VC3S5Ph4PC6S10OVC54 H40 O P2 S10 V[(Ph)4P]2[MoO(dmit)2]table51423.3135106.162184183.74524264150.8328818000.0219928171https://pubs.acs.org/doi/10.1021/jacs.6b05574Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety
[(Ph)4P]2[VO(dmit)2] (1)0.51:20VC3S5Ph4PC6S10OVC54 H40 O P2 S10 V[(d20-Ph)4P]2[MoO(dmit)2]table106403.7995106.162184183.74524264150.8328818000.0219928172https://pubs.acs.org/doi/10.1021/jacs.6b05574Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety
[(Ph)4P]2[V(dmit)3] (2)0.51:20VC3S5Ph4PC9S15VC57 H40 P2 S15 V[(Ph)4P]2[Ti(dmit)3]table4171.1936105.361507681.60576708166.53119930001https://pubs.acs.org/doi/10.1021/jacs.6b05574Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety
(Ph4P)3[Fe(C5O5)3]2.51/500FeC5O5(Ph4P)3C15O15FeC89 H68 Fe O17 P3(Ph4Pd20)3[Ga(C3O5)3]table2.2410.66107.022275384.08342399178.15215510002https://pubs.acs.org/doi/10.1021/acs.inorgchem.5b02429Qubit Control Limited by Spin–Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex
(Ph4P)3[Fe(C5O5)3]2.51/500FeC5O5(Ph4P)3C15O15FeC89 H68 Fe O17 P3(Ph4P)3[Ga(C3O5)3]table3.150.5366107.022275384.08342399178.15215510001https://pubs.acs.org/doi/10.1021/acs.inorgchem.5b02429Qubit Control Limited by Spin–Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex
(PPh4)2[Cu(mnt)2]0.50.001 mol perCuS2C4N2(Ph4P)2S4C8N4CuC59H40CuN4P2S4(PPh4)2[Ni(mnt)2]table8738030.329.1637.458412089.064619631800002https://www.nature.com/articles/ncomms6304Room temperature quantum coherence in a potential molecular qubit
Vanadyl Phthalocyanine (VOPc)0.51:1000 molar ratioVC32H16N8OVC32H16N8OVCrystalline dispersion in titanyl phthalocyanineWPD675639.832.725106.152342484.93710147147.2225839000.0010526571https://pubs.acs.org/doi/pdf/10.1021/jacs.5b13408Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits
(Ph4P)2[VO(C9H6S8)2](4)0.50.32 mMVC9H6S8(Ph4P)2C18H12S16VOC70H62O2P2S16V45 vol % dimethylformamide-d7/toluene-d8table1230054.45.952.925106.241508884.19970117149.6324744000.0099286082https://pubs.acs.org/doi/full/10.1021/jacs.6b13030Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence
(Ph4P)2[VO(C5H6S4)2](2)0.50.32 mMVC5H6S4(Ph4P)2C10H12S8VOC62H58N2OP2S8V45 vol % dimethylformamide-d7/toluene-d8table1650058.76.023.235105.836448683.66202873150.7870027000.0408836662https://pubs.acs.org/doi/full/10.1021/jacs.6b13031Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence
(Ph4P)2[VO(C3H6S2)2](1)0.50.1 mMVC3H6S2(Ph4P)2C6H12S4VOC54H52OP2S4V45 vol % dimethylformamide-d7/toluene-d8table1750062.910.114.815105.732447578.20425011145.41221450002https://pubs.acs.org/doi/full/10.1021/jacs.6b13032Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence
(Ph4P)2[VO(C7H6S6)2](3)0.50.32 mMVC7H6S6(Ph4P)2C14H12S12VOC62H52OP2S12V45 vol % dimethylformamide-d7/toluene-d8table1130063.26.592.9455106.424153784.128253149.8910398000.0011308562https://pubs.acs.org/doi/full/10.1021/jacs.6b13033Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence
oxo(5,10,15,20‐tetratolylporphyrinato)molybdenum(V) complexeO= Mo(TTP)OH0.52 mMMoC44H29N4O2MoC44H29N4O2Mo2: 1 toluene-CHCI3WPD6.9325320371https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.1260331312Temperature and orientation dependence of electron spin relaxation in molybdenum(V) porphyrins
oxo(5,10,15,20‐tetratolylporphyrinato)molybdenum(V) complexeO= Mo(TTP)Cl0.52 mMMoC44 H28 Cl1 Mo1 N4 O1C44 H28 Cl1 Mo1 N4 O12: 1 toluene-CHCI3WPD3.6956736736106.109535782.14256265175.92823570001https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.1260331312Temperature and orientation dependence of electron spin relaxation in molybdenum(V) porphyrins
oxo(5,10,15,20‐tetratolylporphyrinato)molybdenum(V) complexeO= Mo(TTP)OEt0.52 mMMoC46H33N4O2MoC46H33N4O2Mo7: 2: 1 toluene-CHCI3-EtOH.WPD5.96064691.778410171https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.1260331312Temperature and orientation dependence of electron spin relaxation in molybdenum(V) porphyrins
0.51 %molYbC27H27N4O3YbLuC27H27N4O3table7.8430.2961https://pubs.acs.org/doi/abs/10.1021/jacs.6b02702Toward Molecular 4f Single-Ion Magnet Qubits
VOPc0.50.5 mMVOpcC32H8N8H2VOC32H16N8OVD2SO4-table20000115106.152342484.93710147147.2225839000.0010526572https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc00300a#!divAbstractTuning of molecular qubits: very long coherence and spin–lattice relaxation times
(Ph4P)3[Fe(C5O5)3]2.51:1000 molar ratioFeC5O5(Ph4P)3C15O15FeC89 H68 Fe O17 P3crystalized in (Ph4P)3[Ga(C5O5)3] 1:1000 Fe:Gatbale2.60.3296106.109535782.14256265175.92823570001https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc05094h#!divAbstractUnexpected suppression of spin–lattice relaxation via high magnetic field in a high-spin iron(III)complex
(Ph4P)3[Fe(C5O5)3]2.50.5 mMFeC5O5(Ph4P)3C15O15FeC89 H68 Fe O17 P3.5 mM concentration of SO2table2.560.2686106.109535782.14256265175.92823570002https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc05094h#!divAbstractUnexpected suppression of spin–lattice relaxation via high magnetic field in a high-spin iron(III)complex
(Ph4P)2[V(C8S8)3](1)0.50.5 mMVC8S8(Ph4P)2C24S24VC81H51Cl2P2S24VCS2table20417.3794525.118864326754.66105.064849580.54014174166.03642290003https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(Ph4P)2[V(C8S8)3](1)0.50.5 mMVC8S8(Ph4P)2C24S24VC81H51Cl2P2S24V1:1 DMF-d7:Tol-d8table10814.339517.046930696.52.076105.064849580.54014174166.03642290002https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(Ph4P)2[V(C3S5)3](2)0.50.5 mMVβ-C3S5(Ph4P)2C9S15VC57H40P2S15V1:1 DMF-d7:Tol-d8table1230.2687716.606934486.131.966105.36593483.72486257166.3048180002https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(Ph4P)2[V(C3S4O)3](4)0.50.5 mMVC3S4O(Ph4P)2C9S12O3VC58H44O4P2S12V1:1 DMF-d7:Tol-d8table1059.2537258.4536.012.36105.076188479.74399129164.47455810002https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
(Ph4P)2[V(C3S5)3](3)0.50.5 mMVα-C3S5(Ph4P)2C9S15VC60H46OP2S15V1:1 DMF-d7:Tol-d8table2355.04928410.162486936.332.3146105.227666578.93879817166.99841230002https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit
[K(C18N2H36O6)][Y(C5H4Si(CH3)3)3] 10.510 mMYC5H4Si(CH3)3K(C18N2H36O6)C24H39Si3YYC42H75N2O6Si3(CH2)4O (THF)WPD3713772.572.4810.48394.4373573729.56015494169.27930180001https://www.nature.com/articles/s41467-019-11309-3Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
[K(C18N2H36O6)][Lu(C5H4Si(CH3)3)3] 20.510 mMLuC5H4Si(CH3)3K(C18N2H36O6)C24H39Si3LuLuC42H75N2O6Si3(CH2)4O (THF)WPD76574.5042.90.67394.5137265529.84655971169.84432330001https://www.nature.com/articles/s41467-019-11309-3Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
[K(C18N2H36O6)][La(C5H4Si(CH3)3)3] 30.510 mMLaC5H4Si(CH3)3K(C18N2H36O6)C24H39Si3LaLaC42H75N2O6Si3(CH2)4O (THF)WPD143710.110.581https://www.nature.com/articles/s41467-019-11309-3Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
[K(C18N2H36O6)][Sc{(N(Si(CH3)3)2}3] 40.510 mMScN(Si(CH3)3)2K(C18N2H36O6)N3Si6C18H54ScScC36Si6N5H90O6(CH2)4O (THF)WPD496926.361.990.127396.7693890726.69965187161.52774230001https://www.nature.com/articles/s41467-019-11309-3Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
(n-Bu3NH)2[V(C6H4O2)3] (1)0.51 mMVC6H4O2(n-Bu3NH)2C18H12O6VVC42H68N2O6d14-o-terphenyltable416.66666673.385695.3394021825.64148807166.81561660002https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstractNuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes
(n-Bu3NH)2[V(4-Br-C6H3O2)3] (2)0.52 mMVBrC6H3O2(n-Bu3NH)2Br3C18H9O6VVC42N2O6Br3H65d14-o-terphenyltable480.76923083.66695.1498351925.56584087164.27653910002https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstractNuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes
(n-Bu3NH)2[V(3,5-Br2-C6H2O2)3] (3)0.53 mMVBr2C6H2O2(n-Bu3NH)2Br6C18H6O6VVC42N2O6Br6H62d14-o-terphenyltable515.46391753.572https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstractNuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes
(n-Bu3NH)2[V(4,5-Br2-C6H2O2)3] (4)0.54 mMVBr2C6H2O2(n-Bu3NH)2Br6C18H6O6VVC42N2O6Br6H62d14-o-terphenyltable1219.5121951.62694.8870595125.62245459159.71982030002https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstractNuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes
(n-Bu3NH)2[V(C6Br4O2)3] (5)0.55 mMVC6Br4O2(n-Bu3NH)2C18Br12O6VVC42N2O6Br12H56d14-o-terphenyltable446.42857143.73495.4363378725.02826376168.35127860002https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstractNuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes
(PPh4)[Cu(mnt)2]0.5CuS2C4N2PPh4S4C8N4CuC56D40NiN4P2S41 : 1 d2-DCM/CS2table38277.786.42https://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP08161D#!divAbstractMolecular qubits based on potentially nuclear-spin-free nickel ions
VO2+ (aq)0.53 mMVOVOVO1:1 water :glycerolWPD8628.657.445371https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K
chromyl bis(1-hy-droxy-cyclohexanecarboxylic acid)CrO(HCA)2 -0.50.3 mMCrC7H12O3CrO7H24C14CrO7H24C141:1 D20:glycerol-ds,WPD55.10083https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3DihubSolvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution
chromyl bis(1-hy-droxy-cyclohexanecarboxylic acid)CrO(HCA)2 -0.50.3 mMCrC7H12O3CrO7H24C14CrO7H24C141:1 H20:glycerolWPD8590.60631.64.552194.45961https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3DihubSolvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution
(Ph4P)2[V(C6H4S2)3] (1)0.50.5%molarVC6H4S2(Ph4P)2VC18H12S6VC66H52S6P2(Ph4P)2[Ti(C6H4S2)3]table2550042.12.5721.1186104.830878182.81244959161.80193050001https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstractMetal ligand covalency enables room temperature molecular qubit candidates
(Ph4P)2[Cu(C6H4S2)2] (2)0.50.5%molarCuC6H4S2(Ph4P)2CuC12H8S4CuC60H48S4P2(Ph4P)2[Ni(C6H4S2)2]table2670050.52.2260.9824119.996743489.570130391800.0001991540.00013857801https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstractMetal ligand covalency enables room temperature molecular qubit candidates
(Ph4P)2[V(C6H4Se2)3] (3)0.50.5%molarVC6H4Se2(Ph4P)2VC18H12Se6VC66H52Se6P2(Ph4P)2[Ti(C6H4Se2)3]table66801.364.080.5466105.050934481.11832542167.44470910001https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstractMetal ligand covalency enables room temperature molecular qubit candidates
(Ph4P)2[Cu(C6H4Se2)2](4)0.50.5%molarCuC6H4Se2(Ph4P)2CuC12H8Se4CuC60H48Se4P2(Ph4P)2[Ni(C6H4Se2)2]table129006.724.3960.7814119.995599389.925030311800.0002691250.00018726601https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstractMetal ligand covalency enables room temperature molecular qubit candidates
bis(N,N0-dimethyl-4-amino-3-penten-2-imine) copper( II )Cu(Me2Nac)20.51% by weightCuC7H13N2C14H26CuN4C14H26CuN4Zn(Me 2 Nac)2table14200.830.370.32363.5389428139.7307619995.69065107000https://doi.org/10.1039/D1SC06130EChemical control of spin–lattice relaxation to discover a room temperature molecular qubit
bis(acetylacetone)ethylenediamine copper(II)Cu(acacen)0.51% by weightCuC12H18N2O2C12H18CuN2O2C12H18CuN2O2Ni(acacen)table18303.432.880.4524118.466778486.13192613175.50181250.0699575520.068085870https://doi.org/10.1039/D1SC06130EChemical control of spin–lattice relaxation to discover a room temperature molecular qubit
tetramethyltetraazaannulene copper(II)Cu(tmtaa)0.51% by weightCuC22H22N4C22H22Cu1N4C22H22Cu1N4Ni(tmtaa)table406013.91.840.794118.52753983.99068744177.15571660.0695369990.0606575970https://doi.org/10.1039/D1SC06130EChemical control of spin–lattice relaxation to discover a room temperature molecular qubit
bis(N,N0-dimethyl-4-amino-3-penten-2-imine) copper( II )Cu(Me2Nac)20.51% by weightCuC7H13N2C14H26CuN4C14H26CuN4O-terphenyltable3730.814.30.33363.5389428139.7307619995.69065107000https://doi.org/10.1039/D1SC06130EChemical control of spin–lattice relaxation to discover a room temperature molecular qubit
bis(acetylacetone)ethylenediamine copper(II)Cu(acacen)0.51% by weightCuC12H18N2O2C12H18CuN2O2C12H18CuN2O2O-terphenyltable9603.25.881.074118.466778486.13192613175.50181250.0699575520.068085870https://doi.org/10.1039/D1SC06130EChemical control of spin–lattice relaxation to discover a room temperature molecular qubit
tetramethyltetraazaannulene copper(II)Cu(tmtaa)0.51% by weightCuC22H22N4C22H22Cu1N4C22H22Cu1N4O-terphenyltable5376.53.581.824118.52753983.99068744177.15571660.0695369990.0606575970https://doi.org/10.1039/D1SC06130EChemical control of spin–lattice relaxation to discover a room temperature molecular qubit
Cr(2,4-dimethylphenyl)41CrC8H9C32H36CrC32H36CrSn(2,4-dimethylphenyl)4table76.50.4964109.4712013109.00612110.65260080.9934372970.9904606480https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145Tunable Cr4+ Molecular Color Centers
Cr(o-tolyl)41CrC7H7C28H28CrC28H28CrSn(o-tolyl)4table5282.174109.5167019102.3664673113.48754880.9454759070.9448563550https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145Tunable Cr4+ Molecular Color Centers
Cr(2,3-dimethylphenyl)41CrC8H9C32H36CrC32H36CrSn(2,3-dimethylphenyl)4table3661.244109.4713317107.7195948110.38389910.9874624240.9874624240https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145Tunable Cr4+ Molecular Color Centers
Cr(2,2,2-triphenylethyl)41CrC20H17C80H68CrC80H68CrSn(2,4- dimethylphenyl)4table37.30.624109.4599788105.1382892113.36686590.9520805680.9499727750https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145Tunable Cr4+ Molecular Color Centers
Cr((trimethylsilyl)methyl)41CrC4H11SiC16H44CrSi4C16H44CrSi4Sn((trimethylsilyl)methyl)4table15304109.494851106.862923113.50917320.9438882150.9436582890https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145Tunable Cr4+ Molecular Color Centers
Cr(cyclohexyl)41CrC6H11C24H44CrC24H44CrSn(cyclohexyl)4table2690.374109.5133957106.1532407114.57496570.9283665220.9282595010https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145Tunable Cr4+ Molecular Color Centers
[Ni(phen)3](BF4)2 11mMNiC12H8N22(BF4)C36H24N6NiC36H24N6NiB2F81:1 H2O/glyceroltable40.636106.443263179.31305828172.2843328000https://pubs.acs.org/doi/full/10.1021/jacs.0c06909Nickel(II) Metal Complexes as Optically Addressable Qubit Candidates
[Ni(pyr3)2](BF4)2 11mMNiC16H13N32(BF4)C32H26N6NiC32H26N6NiB2F81:1 H2O/glyceroltable4.90.3316107.996356586.42840081179.9852174000https://pubs.acs.org/doi/full/10.1021/jacs.0c06909Nickel(II) Metal Complexes as Optically Addressable Qubit Candidates
(Et3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(Et3NH)2C18H12O6VC30H50N2O6VO-terphenyltable84002.3695.1494492525.47835505163.9862416000https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2–
(n-Bu3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(n-Bu3NH)2C18H12O6VC54H92N2O6VO-terphenyltable86003.9689.796886948.754133835166.9135154000https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2–
(n-Hex3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(n-Hex3NH)2C18H12O6VC66H120N2O6VO-terphenyltable121005.2https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2–
(n-Oct3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(n-Oct3NH)2C18H12O6VC50H84N2O8VO-terphenyltable108005.6695.3404170125.63948133166.8721808000https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2–
[Mo(CN)8][HNBu3]3 0.50.5mMMoCNCs3C8H4Cs3Mo1N8O2C8H4Cs3Mo1N8O2butyronitriletable55000338100.155998472.06368478144.4033858000https://pubs.rsc.org/en/content/articlelanding/2018/DT/C8DT02312COctacyanometallate qubit candidates
[W(CN)8][HNBu3]30.50.5mMWbutyronitriletable713002https://pubs.rsc.org/en/content/articlelanding/2018/DT/C8DT02312COctacyanometallate qubit candidates
(C6F5)3trenVCNtBu12.3% V:Ga, or ∼25 mMVC29H21F15N5C29H21F15N5VC29H21F15N5VH3(C6F5)3trentable0.1374100.065586481.56870402119.61461040.8699452490.8658648840https://pubs.acs.org/doi/full/10.1021/jacs.0c08986Trigonal Bipyramidal V3+ Complex as an Optically Addressable Molecular Qubit Candidate
K3[Ru(C2O4)3]0.51mMRuC2O4K3C6O12RuC6O12RuK31:1 H2O/glyceroltable3.37696.0661941124.39735169175.607075000https://pubs.acs.org/doi/10.1021/ja5037397Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
K3[Cr(C2O4)3]1.51mMCrC2O4K3C6O12CrC6O12CrK31:1 H2O/glyceroltable2.5https://pubs.acs.org/doi/10.1021/ja5037397Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
K3[Fe(C2O4)3]2.51mMFeC2O4K3C6O12FeC6O12FeK31:1 H2O/glyceroltable1.3https://pubs.acs.org/doi/10.1021/ja5037397Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
(Ph4P)3[Fe(CN)6]2.51mMFeCN(Ph4P)3C6N6FeC78H60P3N6Fe1:1 H2O/glyceroltable1.86107.286190585.49648802179.2469274000https://pubs.acs.org/doi/10.1021/ja5037397Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
(Ph4P)3[Ru(CN)6]0.51mMRuCN(Ph4P)3C6N6RuC78H60P3N6Ru1:1 H2O/glyceroltable2.556107.364138186.78254889177.5209102000https://pubs.acs.org/doi/10.1021/ja5037397Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
(Ph4P)3[Os(CN)6]0.51mMOsCN(Ph4P)3C6N6OsC78H60P3N6Os1:1 H2O/glyceroltable4.066107.998146186.42842586180000https://pubs.acs.org/doi/10.1021/ja5037397Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
Cu0.1-PCN-224 0.5Zr:Cu 43.8:1CuC72H36N6O26C72H36Cu1.50N6O26Zr6C72H36Cu1.50N6O26Zr6ZrCl4table5402.90.6360.1484119.847405390.00092178179.54048740.0065202570.0065195430https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC04435JA concentrated array of copper porphyrin candidate qubits
Cu0.4-PCN-2240.5Zr:Cu 9.35:1CuC72H36N6O26C72H36Cu1.50N6O26Zr6C72H36Cu1.50N6O26Zr6ZrCl4table3043.10.1870.05424119.847405390.00092178179.54048740.0065202570.0065195430https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC04435JA concentrated array of copper porphyrin candidate qubits
Cu1.0-PCN-2240.5Zr:Cu 3.99:1CuC72H36N6O26C72H36Cu1.50N6O26Zr6C72H36Cu1.50N6O26Zr6ZrCl4table3202.80.05840.02684119.847405390.00092178179.54048740.0065202570.0065195430https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC04435JA concentrated array of copper porphyrin candidate qubits
(n-Bu3NH)2[V(C6H4O2)3]0.51mMVC6H4O2(n-Bu3NH)2C18H12O6VC54H92N2O6Vd14-o-terphenyltable64002.3689.796886948.754133835166.9135154000https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2–
(n-Bu3NH)2[V(C6H4O2)3]0.50.05% VVC6H4O2(n-Bu3NH)2C18H12O6VC54H92N2O6V(n-Bu3NH) [Ti(C6H4O2 )3 ]table46000.98689.796886948.754133835166.9135154000https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2–
(n-Bu3NH)2[V(C6H4O2)3]-(2d2)0.50.05% VVC6H4O2(n-Bu3NH)2C18H12O6VC54H92N2O6V(n-Bu3NH) [Ti(C6H4O2 )3 ] -(2d2)table55000.83689.796886948.754133835166.9135154000https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2–
(η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium[CpTi(cot)]0.51mMTiC13H13C13H13TiC13H13Tideuterated tolueneWPD4823.92667631.0414403220https://doi.org/10.1002/anie.202009634Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case
(η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium[CpTi(cot)]0.50.5 mMTiC13H14C13H13TiC13H13Tideuterated tolueneWPD1166021https://doi.org/10.1002/anie.202009635Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case
(η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium[CpTi(cot)]0.53%TiC13H15C13H13TiC13H13Ti[CpTi-(cht)]WPD67640.11https://doi.org/10.1002/anie.202009636Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case

Please cite our paper, Mullin et al. (In Press, 2024), where additional details may be found. The website is under active development. Please feel free to contact James Rondinelli with any questions, comments, and feature requests.

 

 

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0019356. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.