Molecular Qubit Database
Search the table below for various molecular qubits described in Mullin et al. Systems-Chart Approach to the Design of Spin Relaxation Times in Molecular Qubits (2024).
Molecular qubit relaxation time data set contain the names, composition, and experimental relaxation times from the literature.
-
Additional information about the geometry of the molecules, computed from experimental structures files, is also included.
-
Structure files are available on GitHub.
If your molecular qubit color center is missing, please contact James Rondinelli to have your entry added. We understand that new molecules and materials are discovered every year.
molecule_name | molecule_abbreviation | spin | qubit_concentration | metal | ligand | counterIon | chemForm | chemFormWCounterIon | Solvent | type | T1_10 | T1_80 | T2_10 | T2_80 | n_neighbors | angles_mean | angles_min | angles_max | tau_4_prime | tau_4 | tau_5 | solvent_num | Paper_URL | Name_of_Paper |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Et3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (Et3NH)2 | C18H12O6V | C30H50N2O6V | o-terphenyl | table | 8400 | 1.46 | 2.25 | 0.77 | 6 | 95.14944925 | 25.47835505 | 163.9862416 | 0 | 0 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstract | Counterion influence on dynamic spin properties in a V(IV) complex | |
(n-Hex3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (n-Hex3NH)2 | C18H12O6V | C54H92N2O6V | o-terphenyl | table | 12100 | 1.79 | 4.802 | 1.13 | 6 | 95.20854264 | 25.49482922 | 166.5903227 | 0 | 0 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstract | Counterion influence on dynamic spin properties in a V(IV) complex | |
(n-Oct3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (n-Oct3NH)2 | C18H12O6V | C66H120N2O6V | o-terphenyl | table | 8600 | 1.96 | 4.76 | 1.15 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstract | Counterion influence on dynamic spin properties in a V(IV) complex | ||||||||
(n-Bu3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (n-Bu3NH)2 | C18H12O6V | C50H84N2O8V | o-terphenyl | table | 10800 | 2.13 | 4.67 | 1.14 | 6 | 95.33923326 | 25.64148807 | 166.8156166 | 0 | 0 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04122a#!divAbstract | Counterion influence on dynamic spin properties in a V(IV) complex | |
vanadyl 5-(4-carboxyphenyl)-10,15,20-tritolylporphyrin | VOTTP-COOH | 0.5 | 0.388888889 | V | C49O2H39N4 | VC49O2H39N4 | VC49O2H39N4 | ZnTTP | WPD | 6.280834073 | 3.833261129 | 8 | 102.7517157 | 27.85242182 | 179.783367 | 0 | 0 | 0 | 1 | https://link.springer.com/article/10.1007/BF03162630 | Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids | |||
Cu(II) tetratolylporphyrin | CuTTP | 0.5 | 0.388888889 | Cu | C48H38N4 | CuC48H38N4 | CuC48H38N4 | ZnTTP | WPD | 3.286211699 | 1.985108531 | 6 | 100.2248341 | 30.09852241 | 177.5544582 | 0 | 0 | 0 | 1 | https://link.springer.com/article/10.1007/BF03162630 | Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids | |||
Ag(II) tetratolylporphyrin | AgTTP | 0.5 | 0.388888889 | Ag | C48H38N4 | AgC48H38N4 | AgC48H38N4 | H2TTP | WPD | 3.286211699 | 0.82900007 | 8 | 102.7517157 | 27.85242182 | 179.783367 | 0 | 0 | 0 | 1 | https://link.springer.com/article/10.1007/BF03162630 | Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids | |||
Cu(II) bis(diethyldithiocarbamate) | Cu(dtc)2 | 0.5 | 0.388888889 | Cu | C5H10NS2 | C10H20CuN2S4 | C10H20CuN2S4 | Ni(dtc)2, solid | WPD | 0.800174086 | 1.064212046 | 6 | 108 | 30.00072778 | 180 | 0 | 0 | 0 | 1 | https://link.springer.com/article/10.1007/BF03162630 | Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids | |||
Cu(II) bis(diethyldithiophosphate) | Cu(Et2dtp)2 | 0.5 | 0.388888889 | Cu | C4H11O2PS2 | CuC8H22O4P2S2 | CuC8H22O4P2S2 | Ni(Et2dtp)2 | WPD | 3.286211699 | 1.736032766 | 6 | 89.44441381 | 8.794831635 | 180 | 0 | 0 | 0 | 1 | https://link.springer.com/article/10.1007/BF03162630 | Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids | |||
Cu(II) bis(diphenyldithiophosphate) | Cu(Ph2dtp)2 | 0.5 | 0.388888889 | Cu | C12H10PS2 | CuC24H20P2S2 | CuC24H20P2S2 | Ni(Ph2dtp)2 | WPD | 1.750977094 | 3.228948089 | 1 | https://link.springer.com/article/10.1007/BF03162630 | Effect of molecular motion on electron spin phase memory times for copper(II) complexes in doped solids | ||||||||||
bis(acetylacetonate)oxovanadium(IV) | (VO-(acac)2) | 0.5 | 5mM | V | C5H8O2 | C10H16O5V | C10H16O5V | 1:1 water :glycerol | WPD | 8129.812084 | 11.51556141 | 6 | 100.6032569 | 25.94139821 | 149.8076402 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026 | Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K | |||
bis(maltolato)oxovanadium(IV) | (VO(maltol)2) | 0.5 | 2.5 mM | V | C6H5O3 | C12H10O7V | C12H10O7V | 1:1 water :glycerol | WPD | 56436.51576 | 15.51867754 | 5 | 94.60923427 | 25.00972692 | 146.8558828 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026 | Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K | |||
Cesium N,N'-ethylenebis(salicylideneiminato-5'-sulfonato)-oxovanadium(IV) | Cs2[VO(salen-SO3)(H2O)] | 0.5 | 12.5 mM | V | O4C7SNH | Cs | O10C14S2N2H4VCs | O10C14S2N2H4VCs | 1:1 water :glycerol | WPD | 8569.771733 | 37.4787369 | 1 | https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026 | Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K | |||||||||
bis(N—hydroxyiminodiacetato)oxovanadium(IV) | (Ca[V(hida)2]) | 0.5 | 12.5 mM | V | O5H4C4N | Ca | O10H8C8N2CaV | O10H8C8N2CaV | 1:1 water :glycerol | WPD | 101103.7972 | 26.26342358 | 8 | 96.53658847 | 22.91190136 | 157.3241746 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026 | Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K | ||
Cr(NO)(CN)53- | 0.5 | 0.9 mM | Cr | CN | CrNOC5N5 | CrNOC5N5 | 1:1 water/glycerol | WPD | 524159.9531 | 17.35597211 | 6 | 106.8180194 | 84.21389247 | 178.0219674 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/full/10.1021/ic981063+ | Electron Spin Relaxation in Chromium−Nitrosyl Complexes | ||||
Cr(NO)(EHBA)+ | 0.5 | 0.26 mM | Cr | C6H10O3 | C12H26O8CrN | C12H26O8CrN | 1:1 water/glycerol | WPD | 38528.02836 | 11.80245755 | 3.305434289 | 1 | https://pubs.acs.org/doi/full/10.1021/ic981063+ | Electron Spin Relaxation in Chromium−Nitrosyl Complexes | ||||||||||
Cr(NO)(EHBA)2 | 0.5 | 0.47 mM | Cr | C6H10O3 | C6O7H18CrN | C6O7H18CrN | 1:1 water/glycerol | WPD | 26993.39831 | 13.29162696 | 1 | https://pubs.acs.org/doi/full/10.1021/ic981063+ | Electron Spin Relaxation in Chromium−Nitrosyl Complexes | |||||||||||
Cr(NO)(H2O)52+ | 0.5 | 0.39 mM | Cr | H2O | H10O6NCr | H10O6NCr | 1:1 water/glycerol | WPD | 53576.8293 | 35.33373266 | 4.557624696 | 3.730118577 | 6 | 106.257276 | 82.06569269 | 177.0701249 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/full/10.1021/ic981063+ | Electron Spin Relaxation in Chromium−Nitrosyl Complexes | ||
oxo−chromium(V) bis(2-ethyl-2-hydroxybutyrate) | CrO(EHBA)2- | 0.5 | 1 mM | Cr | C6H10O3 | C12H20O7Cr | C12H20O7Cr | 1:1 water/glycerol | WPD | 40847.93104 | 22.66700864 | 3.469518006 | 1.50762471 | 5 | 106.2420732 | 83.30661037 | 158.6528034 | 0 | 0 | 0.076361365 | 1 | https://pubs.acs.org/doi/full/10.1021/ic981063+ | Electron Spin Relaxation in Chromium−Nitrosyl Complexes | |
Vanadium(II) oxide (VO2+ but disolved in water) | VO(D2O)5 | 0.5 | 1.2 mM | V | D2O | VO6H10 | VO6H10 | 1:1 D20:glycerol-ds, | WPD | 6.715563284 | 75.0231004 | 3.873856471 | 6 | 105.2464768 | 79.97404439 | 175.1522388 | 0 | 0 | 0 | 3 | https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3Dihub | Solvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution | ||
Vanadium(II) oxide (VO2+ but disolved in water) | VO(H2O)5 | 0.5 | .3 mM | V | H2O | VO6H10 | VO6H10 | 1:1 H20:glycerol | WPD | 101446.4117 | 7.633431369 | 5.31E+00 | 3.627069071 | 6 | 105.2464768 | 79.97404439 | 175.1522388 | 0 | 0 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3Dihub | Solvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution | |
Cu(aq)2+, | 0.5 | 1-5 mM | Cu | Cu | Cu | 1:1 H2O/glycerol | WPD | 3802 | 0.26 | 3.16 | 0.23 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||||
Copper 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxylatomethyl)amino]acetate | CuEDTA | 0.5 | 1-5 mM | Cu | C10H14N2O8 | C10Cu1H12N2O8 | C10Cu1H12N2O8 | 1:1 H2O/glycerol | WPD | 2704.268629 | 0.38 | 3.09 | 0.35 | 6 | 104.7642171 | 73.62034208 | 176.1797656 | 0 | 0 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |
Bis(2-N-1-adamantyl-pyrrolylcarbaldimine)copper(II) | CuN4 complexes (R = 1-adamantyl) | 0.5 | 1-5 mM | Cu | C15N2H16 | C30H38N4Cu | C30H38N4Cu | Toluene/CHCl3 | WPD | 1738 | 0.49 | 3.63 | 0.25 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||
copper(II) tetraimidazole | CuIM4 | 0.5 | 1-5 mM | Cu | C12H16Cl2CuN6O8 | C12H16Cl2CuN6O8 | 1:1 H2O/ethylene glycol | WPD | 2455 | 0.52 | 5 | 85.85228114 | 33.6995331 | 178.6602224 | 0 | 0 | 0.088841426 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||
Cu-S100A12 | 0.5 | 1-5 mM | Cu | C24H22N4Cu | C24H22N4Cu | Buffer/glycerol | WPD | 1175 | 0.65 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||||||
CuN4 complexes, (R =tert-butyl) | 0.5 | 1-5 mM | Cu | tert-butylC5N2 | C18H18N4Cu | C18H18N4Cu | Toluene/CHCl3 | WPD | 724 | 0.79 | 3.09 | 0.31 | 4 | 111.2198074 | 84.56624064 | 142.1504697 | 0.58317671 | 0.569092595 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||
Cu-S100B | 0.5 | 1-5 mM | Cu | Buffer/glycerol | WPD | 0.85 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |||||||||||||||
copper(II) hydroxide | Cu(OH)42- | 0.5 | 1-5 mM | Cu | CuH8O4 | CuH8O4 | 3 M NaOH(aq) | WPD | 2951 | 0.91 | 2.4 | 0.39 | 4 | 100.00258 | 24.81799974 | 175.2387375 | 0 | 0 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||
Cu/Ca-S100B | 0.5 | 1-5 mM | Cu | Buffer/glycerol | WPD | 4898 | 1.15 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||||||||
copper(II) tetra-2-methylimidazole | CuMeIM4 | 0.5 | 1-5 mM | Cu | C13H19N2Cu | C13H19N2Cu | 1:1 H2O/ethylene glycol | WPD | 3388 | 1.35 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |||||||||||
PrP(23–28, 57–91) | 0.5 | 1-5 mM | Cu | Buffer/glycerol | WPD | 1.62 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |||||||||||||||
Bis(2-N-methylpyrrolylcarbaldimine)copper(II) | CuN4 complexes, (R = methyl) | 0.5 | 1-5 mM | Cu | C6N2H3 | C12H6N4Cu | C12H6N4Cu | Toluene/CHCl3 | WPD | 3631 | 2.29 | 3.89 | 0.63 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||
bis-(H-pyrrolylcarbaldimine)copper(II) | CuN4 complexes, (R = H) | 0.5 | 1-5 mM | Cu | C5N2H | C10H2N4Cu | C10H2N4Cu | Toluene/CHCl3 | WPD | 3548 | 3.02 | 3.47 | 0.78 | 4 | 119.9999999 | 82.44123201 | 180 | 8.70E-09 | 6.06E-09 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |
Bis(n-butylpyrrolylcarbaldimine)copper(II) | CuN4 complexes, (R =n-butyl) | 0.5 | 1-5 mM | Cu | C9N2H9 | C18H18N4Cu | C18H18N4Cu | Toluene/CHCl3 | WPD | 2188 | 3.55 | 2.69 | 0.89 | 4 | 111.2182687 | 84.59489917 | 142.1211955 | 0.583293573 | 0.569300213 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |
Bis(2-N-diphenylmethylpyrrolylcarbaldimine)copper(II) | CuN4 complexes, (R = diphenylmethyl) or | 0.5 | 1-5 mM | Cu | C22N3H19 | C36H30CuN4 | C36H30CuN4 | Toluene/CHCl3 | WPD | 2951 | 4.68 | 4.07 | 0.95 | 4 | 114.6477811 | 82.52612896 | 161.9764182 | 0.280880752 | 0.273207506 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |
Bis(2-N-2-adamantyl-pyrrolylcarbaldimine)copper(II) | CuN4 complexes, (R = 2-adamantyl) or | 0.5 | 1-5 mM | Cu | C15N2H16 | C30H38N4Cu | C30H38N4Cu | Toluene/CHCl3 | WPD | 2512 | 5.25 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||||
bis(diethyldithiocarbamato)copper(II) | Cu(dtc)2 | 0.5 | 1-5 mM | Cu | C5H10NS2 | C10H20CuN2S4 | C10H20CuN2S4 | Toluene/CHCl3 | WPD | 169.7328 | 7.08 | 2.138730921 | 1.160657197 | 6 | 108 | 30.00072778 | 180 | 0 | 0 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1064185885799718 | Temperature and Orientation Dependence of Electron-Spin RelaxationRates for Bis ( diethyldithiocarbamato ) copper ( II ) | |
bis(diethyldithiocarbamato)copper(II) | Cu(dtc)2 | 0.5 | 1-5 mM | Cu | C5H10NS2 | C10H20CuN2S4 | C10H20CuN2S4 | Ni(dtc)2, solid | WPD | 174.389 | 6.16983 | 0.84406 | 0.86724 | 6 | 108 | 30.00072778 | 180 | 0 | 0 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1064185885799718 | Temperature and Orientation Dependence of Electron-Spin RelaxationRates for Bis ( diethyldithiocarbamato ) copper ( II ) | |
Cu(hfac)2-(Me2-bipy) | 0.5 | 1-5 mM | Cu | Toluene/CHCl3 | WPD | 178 | 6 | 108 | 30.00072778 | 180 | 0 | 0 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||
Bis(2-N-benzyl-pyrrolylcarbaldimine)copper(II) | CuN4 complexes, (R = benzyl) or | 0.5 | 1-5 mM | Cu | C24H14N4Cu | C24H14N4Cu | Toluene/CHCl3 | WPD | 1202 | 4 | 114.2659842 | 82.47608036 | 172.5231929 | 0.345369902 | 0.272577982 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |||||
(tetraphenylporphyrinato)Cu(II) | CuTTP | 0.5 | 1-5 mM | Cu | C44H28CuN4 | C44H28CuN4 | Toluene/CHCl3 | WPD | 1007.691699 | 4 | 114.51589 | 84.53468813 | 168.7648553 | 0.232722236 | 0.210409031 | 0 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |||||
HGGGW | 0.5 | 1-5 mM | Cu | Buffer/glycerol | WPD | 1413 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | |||||||||||||||
bis(hexafluoroacetylacetonato)Cu(II) | ZnTTPbipy-Cu(hfac)2f | 0.5 | 1-5 mM | Cu | Toluene/CHCl3 | WPD | 529.6977076 | 1 | https://www.sciencedirect.com/science/article/pii/S1090780705003927?via%3Dihub | Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120Â K | ||||||||||||||
(Nitrido Cr(V)tetratolylporphyrin) | CrNTTP | 0.5 | 1 mM | Cr | C12H9N | C48 H36 Cr N5 | C48 H36 Cr N5 | 9:1 toluene:THF | WPD | 7694.036072 | 47.37249951 | 4.18590674 | 3.336266811 | 5 | 107.0390676 | 87.07956663 | 158.9411551 | 0 | 0 | 0 | 1 | https://link.springer.com/article/10.1007/BF03162611 | Electron spin relaxation rates for nitridochromium(V) tetratolylporphyrin and nitridochromium(V) octaethylporphyrin in Frozen solution | |
(Nitrido Cr(V)tetratolylporphyrin) | CrNTTP | 0.5 | 1 mM | Cr | C12H9N | C48 H36 Cr N5 | C48 H36 Cr N5 | toluene | WPD | 8345.355708 | 37.05616127 | 5 | 107.0390676 | 87.07956663 | 158.9411551 | 0 | 0 | 0.015171346 | 1 | https://link.springer.com/article/10.1007/BF03162611 | Electron spin relaxation rates for nitridochromium(V) tetratolylporphyrin and nitridochromium(V) octaethylporphyrin in Frozen solution | |||
(nitrido Cr(V)octaethylporphyrin) | CrNOEP | 0.5 | 1 mM | Cr | C36H44N4 | C36H44N5Cr | C36H44N5Cr | 9:1 toluene:THF | WPD | 2.210336157 | 2.336904694 | 1 | https://link.springer.com/article/10.1007/BF03162611 | Electron spin relaxation rates for nitridochromium(V) tetratolylporphyrin and nitridochromium(V) octaethylporphyrin in Frozen solution | ||||||||||
potassium bis(2-hydroxy-2-methylbutyrato)oxochromate(V) | K[ CrO( HMBA)2] | 0.5 | 1 mM | Cr | C5H10O3 | K | C10H16CrO7 | C10 H16 Cr O7 K | 1: 1 water glycerol | WPD | 47437.49754 | 3.775944159 | 0.199505187 | 1 | https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3Dihub | Electron-spin relaxation times of chromium(V) | ||||||||
Sodium bis(l-hydroxycyclohexanecarboxylato)oxochromate(V) | Na [ CrO( HCA)2] | 0.5 | 1 mM | Cr | C7H12O2 | Na | C14H20CrO7 | C14H20CrNa07 | 1: 1 water glycerol | WPD | 105507.491 | 21.0269035 | 1 | https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3Dihub | Electron-spin relaxation times of chromium(V) | |||||||||
Sodium bis[2-ethyl-2-hydroxybutanoato(2-))oxochromate(V) | Na[CrO(HEBA)2] | 0.5 | 0.5 mM | Cr | C6H12O3 | Na | C12H20CrO7 | C12 H20 Cr O7 Na | 1: 1 water glycerol | WPD | 43326.85799 | 0.114631146 | 5 | 106.2420732 | 83.30661037 | 158.6528034 | 0 | 0 | 0.076361365 | 1 | https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3Dihub | Electron-spin relaxation times of chromium(V) | ||
Sodium bis[(2-hydroxyisobutyric )oxochromate(V)] | Na[CrO(HIBA)2] | 0.5 | 0.5 mM | Cr | C4H8O3 | Na | CrO7H16C8 | CrO7H16C8Na | 1: 1 water glycerol | WPD | 70077.08479 | 0.455195432 | 0.213207615 | 1 | https://www.sciencedirect.com/science/article/pii/002223649290111J?via%3Dihub | Electron-spin relaxation times of chromium(V) | ||||||||
(Ph4P)2[VO(C3S4O)2](4) | 0.5 | 0.5 mM | V | C3S4O | (Ph4P)2 | C6S8O3V | C54H40O3P2S8V | 1:1 DMF:Tol | WPD | 20654 | 51.05 | 2.6 | 0.68 | 5 | 106.3327117 | 83.18663645 | 148.8891068 | 0 | 0 | 0.000871545 | 1 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[VO(C3S4O)2](4) | 0.5 | 0.5 mM | V | C3S4O | (Ph4P)2 | C6S8O3V | C54H40O3P2S8V | 1:1 DMF-d7:Tol-d8 | WPD | 16259 | 52.48 | 4.87 | 2.3 | 5 | 106.3327117 | 83.18663645 | 148.8891068 | 0 | 0 | 0.000871545 | 2 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[VO(C3S5)2](3) | 0.5 | 0.5 mM | V | α-C3S5 | (Ph4P)2 | C6S10OV | C54H40OP2S10V | 1:1 DMF:Tol | WPD | 16331 | 55.85 | 2.95 | 0.69 | 5 | 106.1310264 | 83.59695939 | 150.7281339 | 0 | 0 | 0.02312496 | 1 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[VO(C3S5)2](3) | 0.5 | 0.5 mM | V | α-C3S5 | (Ph4P)2 | C6S10OV | C54H40OP2S10V | 1:1 DMF-d7:Tol-d8 | WPD | 18113 | 61.09 | 4.76 | 2.45 | 5 | 106.1310264 | 83.59695939 | 150.7281339 | 0 | 0 | 0.02312496 | 2 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[VO(C3S5)2](2) | 0.5 | 0.5 mM | V | β-C3S5 | (Ph4P)2 | C6S10OV | C54H40OP2S10V | 1:1 DMF:Tol | WPD | 18197 | 76.38 | 2.3 | 0.682 | 5 | 106.300021 | 84.07978902 | 148.606734 | 0 | 0 | 0.001012905 | 1 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[VO(C3S5)2](2) | 0.5 | 0.5 mM | V | β-C3S5 | (Ph4P)2 | C6S10OV | C54H40OP2S10V | 1:1 DMF-d7:Tol-d8 | WPD | 19724 | 76.74 | 4.57 | 2.59 | 5 | 106.300021 | 84.07978902 | 148.606734 | 0 | 0 | 0.001012905 | 2 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[VO(C8S8)2](1) | 0.5 | 0.5 mM | V | C8S8 | (Ph4P)3 | C16S16OV | C65H43O2P2S16V | 1:1 DMF:Tol | WPD | 23768 | 83.37 | 3.2 | 0.776 | 5 | 105.3294654 | 80.69113622 | 141.2017497 | 0 | 0 | 0.001816275 | 1 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[VO(C8S8)2](1) | 0.5 | 0.5 mM | V | C8S8 | (Ph4P)2 | C16S16OV | C65H43O2P2S16V | 1:1 DMF-d7:Tol-d8 | WPD | 21281 | 88.51 | 3.5 | 2.71 | 5 | 105.3294654 | 80.69113622 | 141.2017497 | 0 | 0 | 0.001816275 | 2 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b08467 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits | |
(Ph4P)2[V(C3S5)3](2) | 0.5 | 0.5 mM | V | β-C3S5 | (Ph4P)2 | C9S15V | C57H40P2S15V | 1:1 DMF/Tol | WPD | 7112.135137 | 6.353309319 | 2.87 | 0.782 | 6 | 105.365934 | 83.72486257 | 166.304818 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(Ph4P)2[V(C8S8)3](1) | 0.5 | 0.5 mM | V | C8S8 | (Ph4P)2 | C24S24V | C81H51Cl2P2S24V | 1:1 DMF/Tol | table | 6606.93448 | 8.511380382 | 3.25 | 1.006 | 6 | 105.0648495 | 80.54014174 | 166.0364229 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(Ph4P)2[V(C3S4O)3](4) | 0.5 | 0.5 mM | V | C3S4O | (Ph4P)2 | C9S12O3V | C58H44O4P2S12V | 1:1 DMF/Tol | table | 10495.42429 | 8.81049 | 2.79 | 0.781 | 6 | 105.0761884 | 79.74399129 | 164.4745581 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(Ph4P)2[V(C3S5)3](3) | 0.5 | 0.5 mM | V | α-C3S5 | (Ph4P)2 | C9S15V | C60H46OP2S15V | 1:1 DMF/Tol | table | 5727.96031 | 9.84011 | 2.59 | 0.796 | 6 | 105.2280935 | 78.93879817 | 166.9984123 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(d20-PPh4)[Cu(mnt)2] | 0.5 | 1 mM | Cu | S2C4N2 | d20-PPh4 | S4C8N4Cu | C56D40NiN4P2S4 | 1 : 1 d2-DCM/CS2 | table | 3985 | 5.5 | 20.3 | 3.5 | 4 | 119.9974329 | 87.63208039 | 179.9999991 | 0.000156984 | 0.000109238 | 0 | 2 | https://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP08161D#!divAbstract | Molecular qubits based on potentially nuclear-spin-free nickel ions | |
K2[V(C9H6S8)3](3) | 0.5 | 0.32 mM | V | C9H6S8 | K2 | C27H27N3S18V | C27H27K2N3S18V | 45 vol % dimethylformamide-d7/toluene-d8 | table | 5300 | 7.57 | 6.89 | 2.409 | 6 | 104.8998942 | 79.64373861 | 163.5634964 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b00794 | Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes | |
K2[V(C7H6S6)3](2) | 0.5 | 0.32 mM | V | C7H6S7 | K2 | C27H27N3S18V | C27H27K2N3S18V | 45 vol % dimethylformamide-d7/toluene-d8 | table | 5900 | 10.61 | 7.48 | 2.809 | 6 | 104.8718299 | 79.80667066 | 162.7552159 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b00794 | Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes | |
K2[V(C5H6S4)3](1) | 0.5 | 0.32 mM | V | C5H6S4 | K2 | C27H30S12V | C27H30K2S12V | 45 vol % dimethylformamide-d7/toluene-d8 | table | 8000 | 13.4 | 7.21 | 2.707 | 6 | 104.7603716 | 80.20536622 | 163.0214237 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b00794 | Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes | |
Copper;(Z)-3-oxo-1,3-diphenylprop-1-en-1-olate | [Cu(dbm)2] | 0.5 | 1 mM | Cu | C15H11O2 | C30H22O4Cu | C30H22CuO4 | [Pd(dbm)2] | table | 8200 | 2.3 | 6.81 | 1.2 | 6 | 100.1609964 | 22.0768824 | 177.958594 | 0 | 0 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2017/CC/C6CC07813C#!divAbstract | Quantitative prediction of nuclear-spin-diffusion-limited coherence times of molecular quantum bits based on copper(II) | |
[(Ph)4P]2[VO(cat)2] | 0.5 | 1 mM | V | C6H4O2 | ((Ph)4P)2 | C12H8O5V | C60 H48 O5 P2 V | CH2Cl2:C6H6 3:1 | table | 6355.980843 | 23.77096985 | 4.339257996 | 3.066632285 | 5 | 94.63610113 | 26.11340832 | 146.4336461 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b02616 | Structural Effects on the Spin Dynamics of Potential Molecular Qubits | |
[(Ph)4P]2[VO(naph-cat)2] | 0.5 | 1 mM | V | C16H12O2 | ((Ph)4P)3 | C32H24O4 | C68H52O5P2V | CH2Cl2:C6H6 3:1 | WPD | 5531.985996 | 45.97048249 | 5.927993907 | 4.815502394 | 1 | https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b02616 | Structural Effects on the Spin Dynamics of Potential Molecular Qubits | ||||||||
VO(dpm)2 | 0.5 | 1:10 mass ratio | V | dpm | C22H38O5V | C22H38O5V | polystyrene with mass ratio 1 : 10 | WPD | 254 | 5.9 | 0.32 | 0.17 | 5 | 106.0393768 | 83.59852885 | 146.3627268 | 0 | 0 | 0.001933232 | 1 | https://pubs.rsc.org/en/Content/ArticleLanding/2016/SC/C5SC04295J#!divAbstract | Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits | ||
VO(dpm)2 | 0.5 | 1 mM | V | dpm | C22H38O5V | C22H38O5V | 2:3 toluene:CH2Cl2 mixture (1sol200 mM) deuterated | WPD | 2.81 | 1.89 | 5 | 106.0393768 | 83.59852885 | 146.3627268 | 0 | 0 | 0.001933232 | 2 | https://pubs.rsc.org/en/Content/ArticleLanding/2016/SC/C5SC04295J#!divAbstract | Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits | ||||
VO(dpm)2 | 0.5 | 1 mM | V | dpm | C22H38O5V | C22H38O5V | 2:3 toluene:CH2Cl2 mixture mixture (1sol200 mM) protic | WPD | 2.8 | 2.12 | 5 | 106.0393768 | 83.59852885 | 146.3627268 | 0 | 0 | 0.001933232 | 1 | https://pubs.rsc.org/en/Content/ArticleLanding/2016/SC/C5SC04295J#!divAbstract | Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits | ||||
[(Ph)4P]2[VO(dmit)2] (1) | 0.5 | 1:20 | V | C3S5 | Ph4P | C6S10OV | C54 H40 O P2 S10 V | [(Ph)4P]2[MoO(dmit)2] | table | 5142 | 3.313 | 5 | 106.1621841 | 83.74524264 | 150.8328818 | 0 | 0 | 0.021992817 | 1 | https://pubs.acs.org/doi/10.1021/jacs.6b05574 | Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety | |||
[(Ph)4P]2[VO(dmit)2] (1) | 0.5 | 1:20 | V | C3S5 | Ph4P | C6S10OV | C54 H40 O P2 S10 V | [(d20-Ph)4P]2[MoO(dmit)2] | table | 10640 | 3.799 | 5 | 106.1621841 | 83.74524264 | 150.8328818 | 0 | 0 | 0.021992817 | 2 | https://pubs.acs.org/doi/10.1021/jacs.6b05574 | Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety | |||
[(Ph)4P]2[V(dmit)3] (2) | 0.5 | 1:20 | V | C3S5 | Ph4P | C9S15V | C57 H40 P2 S15 V | [(Ph)4P]2[Ti(dmit)3] | table | 417 | 1.193 | 6 | 105.3615076 | 81.60576708 | 166.5311993 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/10.1021/jacs.6b05574 | Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety | |||
(Ph4P)3[Fe(C5O5)3] | 2.5 | 1/500 | Fe | C5O5 | (Ph4P)3 | C15O15Fe | C89 H68 Fe O17 P3 | (Ph4Pd20)3[Ga(C3O5)3] | table | 2.241 | 0.6 | 6 | 107.0222753 | 84.08342399 | 178.1521551 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/10.1021/acs.inorgchem.5b02429 | Qubit Control Limited by Spin–Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex | |||
(Ph4P)3[Fe(C5O5)3] | 2.5 | 1/500 | Fe | C5O5 | (Ph4P)3 | C15O15Fe | C89 H68 Fe O17 P3 | (Ph4P)3[Ga(C3O5)3] | table | 3.15 | 0.536 | 6 | 107.0222753 | 84.08342399 | 178.1521551 | 0 | 0 | 0 | 1 | https://pubs.acs.org/doi/10.1021/acs.inorgchem.5b02429 | Qubit Control Limited by Spin–Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex | |||
(PPh4)2[Cu(mnt)2] | 0.5 | 0.001 mol per | Cu | S2C4N2 | (Ph4P)2 | S4C8N4Cu | C59H40CuN4P2S4 | (PPh4)2[Ni(mnt)2] | table | 87380 | 30.32 | 9.163 | 7.458 | 4 | 120 | 89.06461963 | 180 | 0 | 0 | 0 | 2 | https://www.nature.com/articles/ncomms6304 | Room temperature quantum coherence in a potential molecular qubit | |
Vanadyl Phthalocyanine (VOPc) | 0.5 | 1:1000 molar ratio | V | C32H16N8OV | C32H16N8OV | Crystalline dispersion in titanyl phthalocyanine | WPD | 6756 | 39.8 | 3 | 2.72 | 5 | 106.1523424 | 84.93710147 | 147.2225839 | 0 | 0 | 0.001052657 | 1 | https://pubs.acs.org/doi/pdf/10.1021/jacs.5b13408 | Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits | |||
(Ph4P)2[VO(C9H6S8)2](4) | 0.5 | 0.32 mM | V | C9H6S8 | (Ph4P)2 | C18H12S16VO | C70H62O2P2S16V | 45 vol % dimethylformamide-d7/toluene-d8 | table | 12300 | 54.4 | 5.95 | 2.92 | 5 | 106.2415088 | 84.19970117 | 149.6324744 | 0 | 0 | 0.009928608 | 2 | https://pubs.acs.org/doi/full/10.1021/jacs.6b13030 | Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence | |
(Ph4P)2[VO(C5H6S4)2](2) | 0.5 | 0.32 mM | V | C5H6S4 | (Ph4P)2 | C10H12S8VO | C62H58N2OP2S8V | 45 vol % dimethylformamide-d7/toluene-d8 | table | 16500 | 58.7 | 6.02 | 3.23 | 5 | 105.8364486 | 83.66202873 | 150.7870027 | 0 | 0 | 0.040883666 | 2 | https://pubs.acs.org/doi/full/10.1021/jacs.6b13031 | Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence | |
(Ph4P)2[VO(C3H6S2)2](1) | 0.5 | 0.1 mM | V | C3H6S2 | (Ph4P)2 | C6H12S4VO | C54H52OP2S4V | 45 vol % dimethylformamide-d7/toluene-d8 | table | 17500 | 62.9 | 10.11 | 4.81 | 5 | 105.7324475 | 78.20425011 | 145.4122145 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/full/10.1021/jacs.6b13032 | Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence | |
(Ph4P)2[VO(C7H6S6)2](3) | 0.5 | 0.32 mM | V | C7H6S6 | (Ph4P)2 | C14H12S12VO | C62H52OP2S12V | 45 vol % dimethylformamide-d7/toluene-d8 | table | 11300 | 63.2 | 6.59 | 2.945 | 5 | 106.4241537 | 84.128253 | 149.8910398 | 0 | 0 | 0.001130856 | 2 | https://pubs.acs.org/doi/full/10.1021/jacs.6b13033 | Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence | |
oxo(5,10,15,20â€tetratolylporphyrinato)molybdenum(V) complexe | O= Mo(TTP)OH | 0.5 | 2 mM | Mo | C44H29N4O2Mo | C44H29N4O2Mo | 2: 1 toluene-CHCI3 | WPD | 6.932532037 | 1 | https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.1260331312 | Temperature and orientation dependence of electron spin relaxation in molybdenum(V) porphyrins | ||||||||||||
oxo(5,10,15,20â€tetratolylporphyrinato)molybdenum(V) complexe | O= Mo(TTP)Cl | 0.5 | 2 mM | Mo | C44 H28 Cl1 Mo1 N4 O1 | C44 H28 Cl1 Mo1 N4 O1 | 2: 1 toluene-CHCI3 | WPD | 3.695673673 | 6 | 106.1095357 | 82.14256265 | 175.9282357 | 0 | 0 | 0 | 1 | https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.1260331312 | Temperature and orientation dependence of electron spin relaxation in molybdenum(V) porphyrins | |||||
oxo(5,10,15,20â€tetratolylporphyrinato)molybdenum(V) complexe | O= Mo(TTP)OEt | 0.5 | 2 mM | Mo | C46H33N4O2Mo | C46H33N4O2Mo | 7: 2: 1 toluene-CHCI3-EtOH. | WPD | 5.9606469 | 1.77841017 | 1 | https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.1260331312 | Temperature and orientation dependence of electron spin relaxation in molybdenum(V) porphyrins | |||||||||||
0.5 | 1 %mol | Yb | C27H27N4O3Yb | LuC27H27N4O3 | table | 7.843 | 0.296 | 1 | https://pubs.acs.org/doi/abs/10.1021/jacs.6b02702 | Toward Molecular 4f Single-Ion Magnet Qubits | ||||||||||||||
VOPc | 0.5 | 0.5 mM | V | Opc | C32H8N8H2VO | C32H16N8OV | D2SO4- | table | 20000 | 11 | 5 | 106.1523424 | 84.93710147 | 147.2225839 | 0 | 0 | 0.001052657 | 2 | https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc00300a#!divAbstract | Tuning of molecular qubits: very long coherence and spin–lattice relaxation times | ||||
(Ph4P)3[Fe(C5O5)3] | 2.5 | 1:1000 molar ratio | Fe | C5O5 | (Ph4P)3 | C15O15Fe | C89 H68 Fe O17 P3 | crystalized in (Ph4P)3[Ga(C5O5)3] 1:1000 Fe:Ga | tbale | 2.6 | 0.329 | 6 | 106.1095357 | 82.14256265 | 175.9282357 | 0 | 0 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc05094h#!divAbstract | Unexpected suppression of spin–lattice relaxation via high magnetic field in a high-spin iron(III)complex | |||
(Ph4P)3[Fe(C5O5)3] | 2.5 | 0.5 mM | Fe | C5O5 | (Ph4P)3 | C15O15Fe | C89 H68 Fe O17 P3 | .5 mM concentration of SO2 | table | 2.56 | 0.268 | 6 | 106.1095357 | 82.14256265 | 175.9282357 | 0 | 0 | 0 | 2 | https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc05094h#!divAbstract | Unexpected suppression of spin–lattice relaxation via high magnetic field in a high-spin iron(III)complex | |||
(Ph4P)2[V(C8S8)3](1) | 0.5 | 0.5 mM | V | C8S8 | (Ph4P)2 | C24S24V | C81H51Cl2P2S24V | CS2 | table | 20417.37945 | 25.11886432 | 675 | 4.6 | 6 | 105.0648495 | 80.54014174 | 166.0364229 | 0 | 0 | 0 | 3 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(Ph4P)2[V(C8S8)3](1) | 0.5 | 0.5 mM | V | C8S8 | (Ph4P)2 | C24S24V | C81H51Cl2P2S24V | 1:1 DMF-d7:Tol-d8 | table | 10814.33951 | 7.04693069 | 6.5 | 2.07 | 6 | 105.0648495 | 80.54014174 | 166.0364229 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(Ph4P)2[V(C3S5)3](2) | 0.5 | 0.5 mM | V | β-C3S5 | (Ph4P)2 | C9S15V | C57H40P2S15V | 1:1 DMF-d7:Tol-d8 | table | 1230.268771 | 6.60693448 | 6.13 | 1.96 | 6 | 105.365934 | 83.72486257 | 166.304818 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(Ph4P)2[V(C3S4O)3](4) | 0.5 | 0.5 mM | V | C3S4O | (Ph4P)2 | C9S12O3V | C58H44O4P2S12V | 1:1 DMF-d7:Tol-d8 | table | 1059.253725 | 8.453 | 6.01 | 2.3 | 6 | 105.0761884 | 79.74399129 | 164.4745581 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
(Ph4P)2[V(C3S5)3](3) | 0.5 | 0.5 mM | V | α-C3S5 | (Ph4P)2 | C9S15V | C60H46OP2S15V | 1:1 DMF-d7:Tol-d8 | table | 2355.049284 | 10.16248693 | 6.33 | 2.314 | 6 | 105.2276665 | 78.93879817 | 166.9984123 | 0 | 0 | 0 | 2 | https://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00338 | Millisecond Coherence Time in a Tunable Molecular Electronic SpinQubit | |
[K(C18N2H36O6)][Y(C5H4Si(CH3)3)3] 1 | 0.5 | 10 mM | Y | C5H4Si(CH3)3 | K(C18N2H36O6) | C24H39Si3Y | YC42H75N2O6Si3 | (CH2)4O (THF) | WPD | 37137 | 72.57 | 2.481 | 0.48 | 3 | 94.43735737 | 29.56015494 | 169.2793018 | 0 | 0 | 0 | 1 | https://www.nature.com/articles/s41467-019-11309-3 | Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum | |
[K(C18N2H36O6)][Lu(C5H4Si(CH3)3)3] 2 | 0.5 | 10 mM | Lu | C5H4Si(CH3)3 | K(C18N2H36O6) | C24H39Si3Lu | LuC42H75N2O6Si3 | (CH2)4O (THF) | WPD | 7657 | 4.504 | 2.9 | 0.67 | 3 | 94.51372655 | 29.84655971 | 169.8443233 | 0 | 0 | 0 | 1 | https://www.nature.com/articles/s41467-019-11309-3 | Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum | |
[K(C18N2H36O6)][La(C5H4Si(CH3)3)3] 3 | 0.5 | 10 mM | La | C5H4Si(CH3)3 | K(C18N2H36O6) | C24H39Si3La | LaC42H75N2O6Si3 | (CH2)4O (THF) | WPD | 1437 | 10.11 | 0.58 | 1 | https://www.nature.com/articles/s41467-019-11309-3 | Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum | |||||||||
[K(C18N2H36O6)][Sc{(N(Si(CH3)3)2}3] 4 | 0.5 | 10 mM | Sc | N(Si(CH3)3)2 | K(C18N2H36O6) | N3Si6C18H54Sc | ScC36Si6N5H90O6 | (CH2)4O (THF) | WPD | 4969 | 26.36 | 1.99 | 0.127 | 3 | 96.76938907 | 26.69965187 | 161.5277423 | 0 | 0 | 0 | 1 | https://www.nature.com/articles/s41467-019-11309-3 | Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum | |
(n-Bu3NH)2[V(C6H4O2)3] (1) | 0.5 | 1 mM | V | C6H4O2 | (n-Bu3NH)2 | C18H12O6V | VC42H68N2O6 | d14-o-terphenyl | table | 416.6666667 | 3.385 | 6 | 95.33940218 | 25.64148807 | 166.8156166 | 0 | 0 | 0 | 2 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstract | Nuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes | |||
(n-Bu3NH)2[V(4-Br-C6H3O2)3] (2) | 0.5 | 2 mM | V | BrC6H3O2 | (n-Bu3NH)2 | Br3C18H9O6V | VC42N2O6Br3H65 | d14-o-terphenyl | table | 480.7692308 | 3.66 | 6 | 95.14983519 | 25.56584087 | 164.2765391 | 0 | 0 | 0 | 2 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstract | Nuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes | |||
(n-Bu3NH)2[V(3,5-Br2-C6H2O2)3] (3) | 0.5 | 3 mM | V | Br2C6H2O2 | (n-Bu3NH)2 | Br6C18H6O6V | VC42N2O6Br6H62 | d14-o-terphenyl | table | 515.4639175 | 3.57 | 2 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstract | Nuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes | ||||||||||
(n-Bu3NH)2[V(4,5-Br2-C6H2O2)3] (4) | 0.5 | 4 mM | V | Br2C6H2O2 | (n-Bu3NH)2 | Br6C18H6O6V | VC42N2O6Br6H62 | d14-o-terphenyl | table | 1219.512195 | 1.62 | 6 | 94.88705951 | 25.62245459 | 159.7198203 | 0 | 0 | 0 | 2 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstract | Nuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes | |||
(n-Bu3NH)2[V(C6Br4O2)3] (5) | 0.5 | 5 mM | V | C6Br4O2 | (n-Bu3NH)2 | C18Br12O6V | VC42N2O6Br12H56 | d14-o-terphenyl | table | 446.4285714 | 3.73 | 4 | 95.43633787 | 25.02826376 | 168.3512786 | 0 | 0 | 0 | 2 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02899D#!divAbstract | Nuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes | |||
(PPh4)[Cu(mnt)2] | 0.5 | Cu | S2C4N2 | PPh4 | S4C8N4Cu | C56D40NiN4P2S4 | 1 : 1 d2-DCM/CS2 | table | 3827 | 7.78 | 6.4 | 2 | https://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP08161D#!divAbstract | Molecular qubits based on potentially nuclear-spin-free nickel ions | ||||||||||
VO2+ (aq) | 0.5 | 3 mM | V | O | VO | VO | 1:1 water :glycerol | WPD | 8628.65 | 7.44537 | 1 | https://pubs.acs.org/doi/abs/10.1021/bk-2007-0974.ch026 | Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K | |||||||||||
chromyl bis(1-hy-droxy-cyclohexanecarboxylic acid) | CrO(HCA)2 - | 0.5 | 0.3 mM | Cr | C7H12O3 | CrO7H24C14 | CrO7H24C14 | 1:1 D20:glycerol-ds, | WPD | 55.1008 | 3 | https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3Dihub | Solvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution | |||||||||||
chromyl bis(1-hy-droxy-cyclohexanecarboxylic acid) | CrO(HCA)2 - | 0.5 | 0.3 mM | Cr | C7H12O3 | CrO7H24C14 | CrO7H24C14 | 1:1 H20:glycerol | WPD | 8590.606 | 31.6 | 4.55219 | 4.4596 | 1 | https://www.sciencedirect.com/science/article/pii/S109078079891610X?via%3Dihub | Solvent and Temperature Dependence of Spin Echo Dephasingfor Chromium(V) and Vanadyl Complexes in Glassy Solution | ||||||||
(Ph4P)2[V(C6H4S2)3] (1) | 0.5 | 0.5%molar | V | C6H4S2 | (Ph4P)2 | VC18H12S6 | VC66H52S6P2 | (Ph4P)2[Ti(C6H4S2)3] | table | 25500 | 42.1 | 2.572 | 1.118 | 6 | 104.8308781 | 82.81244959 | 161.8019305 | 0 | 0 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstract | Metal ligand covalency enables room temperature molecular qubit candidates | |
(Ph4P)2[Cu(C6H4S2)2] (2) | 0.5 | 0.5%molar | Cu | C6H4S2 | (Ph4P)2 | CuC12H8S4 | CuC60H48S4P2 | (Ph4P)2[Ni(C6H4S2)2] | table | 26700 | 50.5 | 2.226 | 0.982 | 4 | 119.9967434 | 89.57013039 | 180 | 0.000199154 | 0.000138578 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstract | Metal ligand covalency enables room temperature molecular qubit candidates | |
(Ph4P)2[V(C6H4Se2)3] (3) | 0.5 | 0.5%molar | V | C6H4Se2 | (Ph4P)2 | VC18H12Se6 | VC66H52Se6P2 | (Ph4P)2[Ti(C6H4Se2)3] | table | 6680 | 1.36 | 4.08 | 0.546 | 6 | 105.0509344 | 81.11832542 | 167.4447091 | 0 | 0 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstract | Metal ligand covalency enables room temperature molecular qubit candidates | |
(Ph4P)2[Cu(C6H4Se2)2](4) | 0.5 | 0.5%molar | Cu | C6H4Se2 | (Ph4P)2 | CuC12H8Se4 | CuC60H48Se4P2 | (Ph4P)2[Ni(C6H4Se2)2] | table | 12900 | 6.72 | 4.396 | 0.781 | 4 | 119.9955993 | 89.92503031 | 180 | 0.000269125 | 0.000187266 | 0 | 1 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC00074G#!divAbstract | Metal ligand covalency enables room temperature molecular qubit candidates | |
bis(N,N0-dimethyl-4-amino-3-penten-2-imine) copper( II ) | Cu(Me2Nac)2 | 0.5 | 1% by weight | Cu | C7H13N2 | C14H26CuN4 | C14H26CuN4 | Zn(Me 2 Nac)2 | table | 1420 | 0.83 | 0.37 | 0.32 | 3 | 63.53894281 | 39.73076199 | 95.69065107 | 0 | 0 | 0 | https://doi.org/10.1039/D1SC06130E | Chemical control of spin–lattice relaxation to discover a room temperature molecular qubit | ||
bis(acetylacetone)ethylenediamine copper(II) | Cu(acacen) | 0.5 | 1% by weight | Cu | C12H18N2O2 | C12H18CuN2O2 | C12H18CuN2O2 | Ni(acacen) | table | 1830 | 3.43 | 2.88 | 0.452 | 4 | 118.4667784 | 86.13192613 | 175.5018125 | 0.069957552 | 0.06808587 | 0 | https://doi.org/10.1039/D1SC06130E | Chemical control of spin–lattice relaxation to discover a room temperature molecular qubit | ||
tetramethyltetraazaannulene copper(II) | Cu(tmtaa) | 0.5 | 1% by weight | Cu | C22H22N4 | C22H22Cu1N4 | C22H22Cu1N4 | Ni(tmtaa) | table | 4060 | 13.9 | 1.84 | 0.79 | 4 | 118.527539 | 83.99068744 | 177.1557166 | 0.069536999 | 0.060657597 | 0 | https://doi.org/10.1039/D1SC06130E | Chemical control of spin–lattice relaxation to discover a room temperature molecular qubit | ||
bis(N,N0-dimethyl-4-amino-3-penten-2-imine) copper( II ) | Cu(Me2Nac)2 | 0.5 | 1% by weight | Cu | C7H13N2 | C14H26CuN4 | C14H26CuN4 | O-terphenyl | table | 373 | 0.8 | 14.3 | 0.33 | 3 | 63.53894281 | 39.73076199 | 95.69065107 | 0 | 0 | 0 | https://doi.org/10.1039/D1SC06130E | Chemical control of spin–lattice relaxation to discover a room temperature molecular qubit | ||
bis(acetylacetone)ethylenediamine copper(II) | Cu(acacen) | 0.5 | 1% by weight | Cu | C12H18N2O2 | C12H18CuN2O2 | C12H18CuN2O2 | O-terphenyl | table | 960 | 3.2 | 5.88 | 1.07 | 4 | 118.4667784 | 86.13192613 | 175.5018125 | 0.069957552 | 0.06808587 | 0 | https://doi.org/10.1039/D1SC06130E | Chemical control of spin–lattice relaxation to discover a room temperature molecular qubit | ||
tetramethyltetraazaannulene copper(II) | Cu(tmtaa) | 0.5 | 1% by weight | Cu | C22H22N4 | C22H22Cu1N4 | C22H22Cu1N4 | O-terphenyl | table | 537 | 6.5 | 3.58 | 1.82 | 4 | 118.527539 | 83.99068744 | 177.1557166 | 0.069536999 | 0.060657597 | 0 | https://doi.org/10.1039/D1SC06130E | Chemical control of spin–lattice relaxation to discover a room temperature molecular qubit | ||
Cr(2,4-dimethylphenyl)4 | 1 | Cr | C8H9 | C32H36Cr | C32H36Cr | Sn(2,4-dimethylphenyl)4 | table | 76.5 | 0.496 | 4 | 109.4712013 | 109.00612 | 110.6526008 | 0.993437297 | 0.990460648 | 0 | https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145 | Tunable Cr4+ Molecular Color Centers | ||||||
Cr(o-tolyl)4 | 1 | Cr | C7H7 | C28H28Cr | C28H28Cr | Sn(o-tolyl)4 | table | 528 | 2.17 | 4 | 109.5167019 | 102.3664673 | 113.4875488 | 0.945475907 | 0.944856355 | 0 | https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145 | Tunable Cr4+ Molecular Color Centers | ||||||
Cr(2,3-dimethylphenyl)4 | 1 | Cr | C8H9 | C32H36Cr | C32H36Cr | Sn(2,3-dimethylphenyl)4 | table | 366 | 1.24 | 4 | 109.4713317 | 107.7195948 | 110.3838991 | 0.987462424 | 0.987462424 | 0 | https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145 | Tunable Cr4+ Molecular Color Centers | ||||||
Cr(2,2,2-triphenylethyl)4 | 1 | Cr | C20H17 | C80H68Cr | C80H68Cr | Sn(2,4- dimethylphenyl)4 | table | 37.3 | 0.62 | 4 | 109.4599788 | 105.1382892 | 113.3668659 | 0.952080568 | 0.949972775 | 0 | https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145 | Tunable Cr4+ Molecular Color Centers | ||||||
Cr((trimethylsilyl)methyl)4 | 1 | Cr | C4H11Si | C16H44CrSi4 | C16H44CrSi4 | Sn((trimethylsilyl)methyl)4 | table | 1530 | 4 | 109.494851 | 106.862923 | 113.5091732 | 0.943888215 | 0.943658289 | 0 | https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145 | Tunable Cr4+ Molecular Color Centers | |||||||
Cr(cyclohexyl)4 | 1 | Cr | C6H11 | C24H44Cr | C24H44Cr | Sn(cyclohexyl)4 | table | 269 | 0.37 | 4 | 109.5133957 | 106.1532407 | 114.5749657 | 0.928366522 | 0.928259501 | 0 | https://pubs.acs.org/doi/abs/10.1021/jacs.1c10145 | Tunable Cr4+ Molecular Color Centers | ||||||
[Ni(phen)3](BF4)2 | 1 | 1mM | Ni | C12H8N2 | 2(BF4) | C36H24N6Ni | C36H24N6NiB2F8 | 1:1 H2O/glycerol | table | 4 | 0.63 | 6 | 106.4432631 | 79.31305828 | 172.2843328 | 0 | 0 | 0 | https://pubs.acs.org/doi/full/10.1021/jacs.0c06909 | Nickel(II) Metal Complexes as Optically Addressable Qubit Candidates |
||||
[Ni(pyr3)2](BF4)2 | 1 | 1mM | Ni | C16H13N3 | 2(BF4) | C32H26N6Ni | C32H26N6NiB2F8 | 1:1 H2O/glycerol | table | 4.9 | 0.331 | 6 | 107.9963565 | 86.42840081 | 179.9852174 | 0 | 0 | 0 | https://pubs.acs.org/doi/full/10.1021/jacs.0c06909 | Nickel(II) Metal Complexes as Optically Addressable Qubit Candidates |
||||
(Et3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (Et3NH)2 | C18H12O6V | C30H50N2O6V | O-terphenyl | table | 8400 | 2.3 | 6 | 95.14944925 | 25.47835505 | 163.9862416 | 0 | 0 | 0 | https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090 | Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2– | ||||
(n-Bu3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (n-Bu3NH)2 | C18H12O6V | C54H92N2O6V | O-terphenyl | table | 8600 | 3.9 | 6 | 89.79688694 | 8.754133835 | 166.9135154 | 0 | 0 | 0 | https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090 | Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2– | ||||
(n-Hex3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (n-Hex3NH)2 | C18H12O6V | C66H120N2O6V | O-terphenyl | table | 12100 | 5.2 | https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090 | Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2– | |||||||||||
(n-Oct3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (n-Oct3NH)2 | C18H12O6V | C50H84N2O8V | O-terphenyl | table | 10800 | 5.6 | 6 | 95.34041701 | 25.63948133 | 166.8721808 | 0 | 0 | 0 | https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090 | Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2– | ||||
[Mo(CN)8][HNBu3]3 | 0.5 | 0.5mM | Mo | CN | Cs3 | C8H4Cs3Mo1N8O2 | C8H4Cs3Mo1N8O2 | butyronitrile | table | 55000 | 33 | 8 | 100.1559984 | 72.06368478 | 144.4033858 | 0 | 0 | 0 | https://pubs.rsc.org/en/content/articlelanding/2018/DT/C8DT02312C | Octacyanometallate qubit candidates | ||||
[W(CN)8][HNBu3]3 | 0.5 | 0.5mM | W | butyronitrile | table | 71300 | 2 | https://pubs.rsc.org/en/content/articlelanding/2018/DT/C8DT02312C | Octacyanometallate qubit candidates | |||||||||||||||
(C6F5)3trenVCNtBu | 1 | 2.3% V:Ga, or ∼25 mM | V | C29H21F15N5 | C29H21F15N5V | C29H21F15N5V | H3(C6F5)3tren | table | 0.137 | 4 | 100.0655864 | 81.56870402 | 119.6146104 | 0.869945249 | 0.865864884 | 0 | https://pubs.acs.org/doi/full/10.1021/jacs.0c08986 | Trigonal Bipyramidal V3+ Complex as an Optically Addressable Molecular Qubit Candidate | ||||||
K3[Ru(C2O4)3] | 0.5 | 1mM | Ru | C2O4 | K3 | C6O12Ru | C6O12RuK3 | 1:1 H2O/glycerol | table | 3.37 | 6 | 96.06619411 | 24.39735169 | 175.607075 | 0 | 0 | 0 | https://pubs.acs.org/doi/10.1021/ja5037397 | Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes | |||||
K3[Cr(C2O4)3] | 1.5 | 1mM | Cr | C2O4 | K3 | C6O12Cr | C6O12CrK3 | 1:1 H2O/glycerol | table | 2.5 | https://pubs.acs.org/doi/10.1021/ja5037397 | Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes | ||||||||||||
K3[Fe(C2O4)3] | 2.5 | 1mM | Fe | C2O4 | K3 | C6O12Fe | C6O12FeK3 | 1:1 H2O/glycerol | table | 1.3 | https://pubs.acs.org/doi/10.1021/ja5037397 | Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes | ||||||||||||
(Ph4P)3[Fe(CN)6] | 2.5 | 1mM | Fe | CN | (Ph4P)3 | C6N6Fe | C78H60P3N6Fe | 1:1 H2O/glycerol | table | 1.8 | 6 | 107.2861905 | 85.49648802 | 179.2469274 | 0 | 0 | 0 | https://pubs.acs.org/doi/10.1021/ja5037397 | Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes | |||||
(Ph4P)3[Ru(CN)6] | 0.5 | 1mM | Ru | CN | (Ph4P)3 | C6N6Ru | C78H60P3N6Ru | 1:1 H2O/glycerol | table | 2.55 | 6 | 107.3641381 | 86.78254889 | 177.5209102 | 0 | 0 | 0 | https://pubs.acs.org/doi/10.1021/ja5037397 | Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes | |||||
(Ph4P)3[Os(CN)6] | 0.5 | 1mM | Os | CN | (Ph4P)3 | C6N6Os | C78H60P3N6Os | 1:1 H2O/glycerol | table | 4.06 | 6 | 107.9981461 | 86.42842586 | 180 | 0 | 0 | 0 | https://pubs.acs.org/doi/10.1021/ja5037397 | Influence of Electronic Spin and Spin−Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes | |||||
Cu0.1-PCN-224 | 0.5 | Zr:Cu 43.8:1 | Cu | C72H36N6O26 | C72H36Cu1.50N6O26Zr6 | C72H36Cu1.50N6O26Zr6 | ZrCl4 | table | 540 | 2.9 | 0.636 | 0.148 | 4 | 119.8474053 | 90.00092178 | 179.5404874 | 0.006520257 | 0.006519543 | 0 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC04435J | A concentrated array of copper porphyrin candidate qubits | |||
Cu0.4-PCN-224 | 0.5 | Zr:Cu 9.35:1 | Cu | C72H36N6O26 | C72H36Cu1.50N6O26Zr6 | C72H36Cu1.50N6O26Zr6 | ZrCl4 | table | 304 | 3.1 | 0.187 | 0.0542 | 4 | 119.8474053 | 90.00092178 | 179.5404874 | 0.006520257 | 0.006519543 | 0 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC04435J | A concentrated array of copper porphyrin candidate qubits | |||
Cu1.0-PCN-224 | 0.5 | Zr:Cu 3.99:1 | Cu | C72H36N6O26 | C72H36Cu1.50N6O26Zr6 | C72H36Cu1.50N6O26Zr6 | ZrCl4 | table | 320 | 2.8 | 0.0584 | 0.0268 | 4 | 119.8474053 | 90.00092178 | 179.5404874 | 0.006520257 | 0.006519543 | 0 | https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC04435J | A concentrated array of copper porphyrin candidate qubits | |||
(n-Bu3NH)2[V(C6H4O2)3] | 0.5 | 1mM | V | C6H4O2 | (n-Bu3NH)2 | C18H12O6V | C54H92N2O6V | d14-o-terphenyl | table | 6400 | 2.3 | 6 | 89.79688694 | 8.754133835 | 166.9135154 | 0 | 0 | 0 | https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090 | Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2– | ||||
(n-Bu3NH)2[V(C6H4O2)3] | 0.5 | 0.05% V | V | C6H4O2 | (n-Bu3NH)2 | C18H12O6V | C54H92N2O6V | (n-Bu3NH) [Ti(C6H4O2 )3 ] | table | 4600 | 0.98 | 6 | 89.79688694 | 8.754133835 | 166.9135154 | 0 | 0 | 0 | https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090 | Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2– | ||||
(n-Bu3NH)2[V(C6H4O2)3]-(2d2) | 0.5 | 0.05% V | V | C6H4O2 | (n-Bu3NH)2 | C18H12O6V | C54H92N2O6V | (n-Bu3NH) [Ti(C6H4O2 )3 ] -(2d2) | table | 5500 | 0.83 | 6 | 89.79688694 | 8.754133835 | 166.9135154 | 0 | 0 | 0 | https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c01090 | Impact of Counter Ion Methyl Groups on Spin Relaxation in [V(C6H4O2)3]2– | ||||
(η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium | [CpTi(cot)] | 0.5 | 1mM | Ti | C13H13 | C13H13Ti | C13H13Ti | deuterated toluene | WPD | 4823.926676 | 31.04144032 | 20 | https://doi.org/10.1002/anie.202009634 | Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case | ||||||||||
(η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium | [CpTi(cot)] | 0.5 | 0.5 mM | Ti | C13H14 | C13H13Ti | C13H13Ti | deuterated toluene | WPD | 11660 | 21 | https://doi.org/10.1002/anie.202009635 | Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case | |||||||||||
(η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium | [CpTi(cot)] | 0.5 | 3% | Ti | C13H15 | C13H13Ti | C13H13Ti | [CpTi-(cht)] | WPD | 6764 | 0.11 | https://doi.org/10.1002/anie.202009636 | Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case |
Please cite our paper, Mullin et al. (In Press, 2024), where additional details may be found. The website is under active development. Please feel free to contact James Rondinelli with any questions, comments, and feature requests.
This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0019356. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.